Synthesis and nematicidal activity of natural nematicidal lead compound Waltherione A analogues
-
摘要: 为了找出天然杀线虫先导生物碱Waltherione A的关键药效基团并简化其结构,以2,3-二甲氧基苯甲醛和3,4-二甲氧基苯甲醛为原料,经过分子内傅克烷基化反应形成苯并七元氧桥环,并用不同的取代基与桥环相连,合成了12个Waltherione A类似物,其中8个化合物未见文献报道,所有目标化合物的结构均通过核磁共振氢谱(1H NMR)、碳谱(13C NMR)及高分辨质谱(HRMS)确证。采用浸虫法测定了目标化合物对南方根结线虫Meloidogyne incognita的杀虫活性。结果表明:目标化合物杀线虫的活性均低于Waltherione A,其中化合物 A-12 在200 μg/mL下对南方根结线虫2龄幼虫72 h的致死率为69.7%。 A-12 的杀线虫活性高于其他目标化合物,表明芳香取代基与苯并七元氧桥环相连时对化合物活性的提升存在积极作用,这为进一步的结构优化提供了方向。Abstract: To find out the key pharmacores of Waltherione A which is a natural nematicidal lead alkaloid and simplify its structure, twelve Waltherione A analogues were synthesized from 2,3-dimethoxybenzaldehyde and 3,4-dimethoxybenzaldehyde through intramolecular Friedel-Crafts alkylation reaction, and connected with the bridge ring with different substituents. Among them, eight compounds have not been reported in the literature. The structures of all target compounds were confirmed by 1H NMR,13C NMR and HRMS. The nematicidal activity of the target compounds against Meloidogyne incognita was determined by the immersion method. The results showed that the nematicidal activity of all the target compounds was lower than that of Waltherione A. The 72-h mortality of compound A-12 against the 2nd instar larvae of M. incognita was 69.7% at 200 μg/mL, and the nematicidal activity of compound A-12 was higher in comparation with other compounds. The results showed that the aromatic substituents connected with bridge ring had a positive effect on the activity of the compound, which provides a direction for further structural optimization.
-
表 1 化合物A-7~A-13和B-7中R1、R2的结构
Table 1. The structures of R1 and R2 in compounds A-7-A-13 and B-7
化合物
CompoundR1 R2 A-7 3,4-(OCH3)2 B-7 2,3-(OCH3)2 A-8 3,4-(OCH3)2 A-9 3,4-(OCH3)2 A-10 3,4-(OCH3)2 A-11 3,4-(OCH3)2 A-12 3,4-(OCH3)2 A-13 3,4-(OCH3)2 表 2 目标化合物对南方根结线虫的致死活性 (校正死亡率/%)
Table 2. Nematicidal activity of the target compounds against Meloidogyne incongnita (Adjusted mortality/%)
化合物
Compound200 μg/mL 100 μg/mL 50 μg/mL 24 h 48 h 72 h 24 h 48 h 72 h 24 h 48 h 72 h A-5 9.9±0.7 13.8±1.4 14.9±1.1 2.3±0.1 4.3±0.2 4.9±0.6 — — — A-6 8.3±0.2 12.3±1.5 13.2±0.8 3.4±0.8 4.5±1.1 5.7±0.8 — — — A-7 12.3±0.4 19.6±0.2 25.3±0.1 5.7±0.3 7.8±0.1 9.3±0.7 — — — A-8 12.5±0.1 22.6±0.4 28.3±0.2 3.1±0.2 5.8±0.1 9.9±0.8 — — — A-9 11.7±0.1 18.9±0.6 26.8±0.5 5.2±0.5 6.4±0.1 8.8±0.4 — — — A-10 11.6±0.2 16.8±0.5 27.1±0.1 2.2±0.6 4.3±0.1 7.8±0.1 — — — A-11 6.4±0.1 14.2±0.4 19.0±0.2 1.8±0.6 3.6±0.1 6.7±0.6 — — — A-12 47.8±0.3 64.1±0.5 69.7±1.3 9.0±0.2 17.2±0.1 27.3±0.2 2.2±0.2 11.9±0.5 16.8±0.7 A-13 9.9±0.2 12.4±0.9 20.0±0.7 2.0±0.9 4.3±0.1 7.0±0.3 — — — B-5 7.6±0.2 14.7±0.1 15.5±0.1 3.5±0.8 4.7±0.1 5.2±0.6 — — — B-6 8.1±0.1 13.1±0.3 14.6±0.1 2.4±0.6 3.8±0.1 4.4±0.7 — — — B-7 10.5±0.6 20.6±0.2 26.3±1.3 4.7±0.1 6.1±0.1 9.4±0.9 — — — Waltherione A — — — — — — 97.1±1.7 100.0±0.0 100.0±0.0 阿维菌素 abamectin — — — — — — 100.0±0.0 100.0±0.0 100.0±0.0 注:“—” 未测试。Note: ' — ' not tested. -
[1] CHEN J X, LI Q X, SONG B A. Chemical nematicides: recent research progress and outlook[J]. J Agric Food Chem, 2020, 68(44): 12175-12188. doi: 10.1021/acs.jafc.0c02871 [2] HOELZEL S C, VIEIRA E R, GIACOMELLI S R, et al. An unusual quinolinone alkaloid from Waltheria douradinha[J]. Phytochemistry, 2005, 66(10): 1163-1167. doi: 10.1016/j.phytochem.2005.03.019 [3] DIAS G C, GRESSLER V, HOENZEL S C, et al. Constituents of the roots of Melochia chamaedrys[J]. Phytochemistry, 2007, 68(5): 668-672. doi: 10.1016/j.phytochem.2006.11.004 [4] GRESSLER V, STÜKER C Z, DIAS G de O C, et al. Quinolone alkaloids from Waltheria douradinha[J]. Phytochemistry, 2008, 69(4): 994-999. doi: 10.1016/j.phytochem.2007.10.018 [5] JADULCO R C, POND C D, Van WAGONER R M, et al. 4-Quinolone alkaloids from Melochia odorata[J]. J Nat Prod, 2014, 77(1): 183-187. doi: 10.1021/np400847t [6] RAHIM A, SAITO Y, FUKUYOSHI S, et al. Paliasanines A-E, 3, 4-methylenedioxyquinoline alkaloids fused with a phenyl-14-oxabicyclo[3.2.1]octane unit from Melochia umbellata var. deglabrata[J]. J Nat Prod, 2020, 83(10): 2931-2939. doi: 10.1021/acs.jnatprod.0c00454 [7] JANG J Y, LE DANG Q, CHOI G J, et al. Control of root-knot nematodes using Waltheria indica producing 4-quinolone alkaloids[J]. Pest Manag Sci, 2019, 75(8): 2264-2270. [8] KIM J, SEO S M, LEE S G, et al. Nematicidal activity of plant essential oils and components from coriander (Coriandrum sativum), oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii) essential oils against pine wood nematode (Bursaphelenchus xylophilus)[J]. J Agric Food Chem, 2008, 56(16): 7316-7320. doi: 10.1021/jf800780f [9] LEWIS A R, REBER K P. Synthesis of antifungal alatanone and trineurone polyketides[J]. Tetrahedron Lett, 2016: 1083-1086. [10] TRIANDAFILLIDI I, RAFTOPOULOU M, SAVVIDOU A, et al. Organocatalytic synthesis of lactones by the oxidation of alkenoic acids[J]. ChemCatChem, 2017, 9(21): 4120-4124. doi: 10.1002/cctc.201700837 [11] Van HORN J D, BURROWS C J. Formation oftrans-3-hydroxy-4-phenylbutyrolactone from trans-styrylacetic acid and aqueous KHSO5[J]. Tetrahedron Lett, 1999, 40(11): 2069-2070. doi: 10.1016/S0040-4039(99)00167-7 [12] ALBURY A M M, De JOARDER D, JENNINGS M P. Synthesis of (±)-tetramethoxy-sinensigenin A via an intramolecular Marson-type cyclization[J]. Tetrahedron Lett, 2015, 56(23): 3057-3059. doi: 10.1016/j.tetlet.2014.11.030 [13] CHEN S Y, DICKSON D W. A technique for determining live second-stage juveniles of Heterodera glycines[J]. J Nematol, 2000, 32(1): 117-121. -
天然杀线虫先导化合物 Waltherione A 类似物的合成_目标化合物核磁谱图.pdf
-