• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杠柳新苷类化合物对东方黏虫的杀虫活性及对中肠细胞刷状缘膜囊泡3种特征酶活性的影响

冯明星 胡兆农 吴文君

冯明星, 胡兆农, 吴文君. 杠柳新苷类化合物对东方黏虫的杀虫活性及对中肠细胞刷状缘膜囊泡3种特征酶活性的影响[J]. 农药学学报, 2021, 23(2): 308-315. doi: 10.16801/j.issn.1008-7303.2021.0003
引用本文: 冯明星, 胡兆农, 吴文君. 杠柳新苷类化合物对东方黏虫的杀虫活性及对中肠细胞刷状缘膜囊泡3种特征酶活性的影响[J]. 农药学学报, 2021, 23(2): 308-315. doi: 10.16801/j.issn.1008-7303.2021.0003
Mingxing FENG, Zhaonong HU, Wenjun WU. Insecticidal activity of periplocosides against oriental armyworm (Mythimna separata) and its effects on three characteristic enzyme activities in the midgut cell BBMV[J]. Chinese Journal of Pesticide Science, 2021, 23(2): 308-315. doi: 10.16801/j.issn.1008-7303.2021.0003
Citation: Mingxing FENG, Zhaonong HU, Wenjun WU. Insecticidal activity of periplocosides against oriental armyworm (Mythimna separata) and its effects on three characteristic enzyme activities in the midgut cell BBMV[J]. Chinese Journal of Pesticide Science, 2021, 23(2): 308-315. doi: 10.16801/j.issn.1008-7303.2021.0003

杠柳新苷类化合物对东方黏虫的杀虫活性及对中肠细胞刷状缘膜囊泡3种特征酶活性的影响

doi: 10.16801/j.issn.1008-7303.2021.0003
基金项目: 国家自然科学基金 (31972303)
详细信息
    作者简介:

    冯明星,男,博士,主要从事杀虫剂毒理学和应用技术研究,E­mail:fengmx2010@126.com

    通讯作者:

    胡兆农,通信作者 (Author for correspondence),男,博士,教授,主要从事植物源农药和杀虫药剂毒理学研究,E-mail:huzhaonong@nwsuaf.edu.cn

  • 中图分类号: TQ450.2;S482.3;Q965.9

Insecticidal activity of periplocosides against oriental armyworm (Mythimna separata) and its effects on three characteristic enzyme activities in the midgut cell BBMV

  • 摘要: 为了研究和阐明杠柳新苷类杀虫活性化合物对东方黏虫的杀虫活性及作用靶标,采用载毒叶片饲喂法测定比较了6个杠柳新苷类化合物 (PSA、PSD、PSE、PSF、PSP和PST) 对3龄东方黏虫Mythimna separata Walker幼虫的毒力;应用MgCl2沉淀差速离心法制备东方黏虫中肠细胞刷状缘膜囊泡 (BBMV) 基础上,测定了6个化合物对东方黏虫幼虫中肠细胞BBMV中3种特征酶——氨肽酶、碱性磷酸酶及V-ATP酶活性的影响。结果表明:杠柳新苷P (PSP) 和T (PST) 对3龄东方黏虫幼虫表现出较高的杀虫活性,其24 h的致死中浓度(LC50值) 分别为1.60和1.23 mg/mL,杠柳新苷A (PSA)、D (PSD) 和F (PSF) 仅表现出微弱的杀虫活性 (LC50 > 20 mg/mL),而杠柳新苷E (PSE)则无明显杀虫活性。酶活性测定结果表明,6个杠柳新苷类化合物对氨肽酶和碱性磷酸酶活性均没有明显的抑制作用,而高杀虫活性化合物PSP和PST则可浓度依赖地抑制V-ATP酶活性。推测杠柳新苷类杀虫活性化合物的作用靶标与V-ATP酶有密切关系。
  • 1  供试杠柳新苷类化合物的化学结构式

    1.  The structural formula of the periplocoside compounds

    图  1  杠柳新苷类化合物对东方黏虫幼虫中肠细胞BBMV中V-ATP酶活性的影响

    注:数据以平均值 ± 标准差的形式表示;图中不同小写字母表示通过Duncan氏新复极差法检验不同处理在p < 0.05水平差异显著;所有生物学试验均重复3次以上。

    Figure  1.  The effects of different periplocoside compounds to V-ATPase in BBMV of M. separata larvae midgutl cell

    Note: The data are presented as mean ± SD. Different lower-case letters indicate significant differences between treatments by Duncan’s new multiple range test (p < 0.05). All experiments in this study were repeated more than three times.

    表  1  杠柳新苷类化合物处理后24 h对3龄东方黏虫幼虫的杀虫活性

    Table  1.   Insecticidal activities of periplocoside compounds to 3th M. separata larvae after 24 h

    供试化合物
    Compound
    回归方程
    Regression equation
    相关系数
    Correlation coefficient
    致死中浓度
    LC50/(mg/mL)
    95% 置信限
    95% Confidence limits/(mg/mL)
    PSA y = −5.183 + 1.163x 0.9912 28.68 17.05~73.89
    PSD y = −6.405 + 1.472x 0.9934 22.44 15.15~41.24
    PSE > 32
    PSF y = −4.595 + 1.062x 0.9886 21.31 12.86~52.54
    PSP y = −11.575 + 3.614x 0.9745 1.60 1.28~1.91
    PST y = −12.752 + 4.129x 0.9896 1.23 0.98~1.47
    注:“—” 表示无活性数据。
    Note: '—' means no active data.
    下载: 导出CSV
  • [1] 张立媛, 贲亚俐, 刘德立. 靶标酶在农药研发中的作用[J]. 化学与生物工程, 2008, 25(2): 10-14. doi: 10.3969/j.issn.1672-5425.2008.02.003

    ZHANG L Y, BEN Y L, LIU D L. The function of target enzyme in research and development of pesticides[J]. Chem Bioeng, 2008, 25(2): 10-14. doi: 10.3969/j.issn.1672-5425.2008.02.003
    [2] KHAJURIA C, BUSCHMAN L L, CHEN M S, et al. Identification of a novel aminopeptidase P-like gene (OnAPP) possibly involved in Bt toxicity and resistance in a major corn pest (Ostrinia nubilalis)[J]. PLoS One, 2011, 6(8): e23983. doi: 10.1371/journal.pone.0023983
    [3] JURAT-FUENTES J L, KARUMBAIAH L, JAKKA S R K, et al. Reduced levels of membrane-bound alkaline phosphatase are common to lepidopteran strains resistant to cry toxins from Bacillus thuringiensis[J]. PLoS One, 2011, 6(3): e17606. doi: 10.1371/journal.pone.0017606
    [4] KEETON T P, BULLA L A Jr. Ligand specificity and affinity of BT-R1, the Bacillus thuringiensis Cry1A toxin receptor from Manduca sexta, expressed in mammalian and insect cell cultures[J]. Appl Environ Microbiol, 1997, 63(9): 3419-3425. doi: 10.1128/AEM.63.9.3419-3425.1997
    [5] GRIFFITTS J S, HASLAM S M, YANG T, et al. Glycolipids as receptors for Bacillus thuringiensis crystal toxin[J]. Science, 2005, 307(5711): 922-925. doi: 10.1126/science.1104444
    [6] WHALON M E, WINGERD B A. Bt: mode of action and use[J]. Arch Insect Biochem Physiol, 2003, 54(4): 200-211. doi: 10.1002/arch.10117
    [7] LU L N, QI Z J, LI Q L, et al. Validation of the target protein of insecticidal dihydroagarofuran sesquiterpene polyesters[J]. Toxins, 2016, 8(3): 79. doi: 10.3390/toxins8030079
    [8] WEI J L, LI D, XI X, et al. Molecular insights into the potential insecticidal interaction of β-dihydroagarofuran derivatives with the H subunit of V-ATPase[J]. Molecules, 2017, 22(10): 1701. doi: 10.3390/molecules22101701
    [9] WANG Y Y, ZHANG J W, FENG M X, et al. Insight into the mode of action of celangulin V on the transmembrane potential of midgut cells in lepidopteran larvae[J]. Toxins, 2017, 9(12): 393. doi: 10.3390/toxins9120393
    [10] 李彦凯, 吕博, 胡兆农, 等. 杀虫植物杠柳研究进展[J]. 农药学学报, 2019, 21(5): 709-717.

    LI Y K, LYU B, HU Z N, et al. Research advances in the insecticidal plant Periploca sepium[J]. Chin J Pestic Sci, 2019, 21(5): 709-717.
    [11] FENG M, SHI B, ZHAO Y, et al. Histopathological effects and immunolocalization of periplocoside NW from Periploca sepium Bunge on the midgut epithelium of Mythimna separata Walker larvae[J]. Pestic Biochem Physiol, 2014, 115: 67-72. doi: 10.1016/j.pestbp.2014.09.001
    [12] FENG M X, ZHAO J, ZHANG J W, et al. Fluorescence localization and comparative ultrastructural study of periplocoside NW from Periploca sepium bunge in the midgut of the oriental amyworm, Mythimna separata walker (Lepidoptera: Noctuidae)[J]. Toxins, 2014, 6(5): 1575-1585. doi: 10.3390/toxins6051575
    [13] 左佳妮, 孙文聪, 冯明星, 等. 杠柳新苷T作用东方黏虫幼虫中肠细胞的免疫定位研究[J]. 西北农林科技大学学报 (自然科学版), 2015, 43(11): 118-122, 128.

    ZUO J N, SUN W C, FENG M X, et al. Immunolocalization of periplocoside T from Periploca sepium Bunge in larvae midgut of oriental amyworm, Mythimna separata Walker (Lepidoptera: Noctuidae)[J]. J Northwest A& F Univ (Nat Sci Ed), 2015, 43(11): 118-122, 128.
    [14] WANG Y, QI Z, QI M, et al. Effects of periplocoside P from Periploca sepium on the midgut transmembrane potential of Mythimna separata larvae[J]. Sci Rep, 2016, 6: 36982. doi: 10.1038/srep36982
    [15] FENG M X, HE Z Y, WANG Y Y, et al. Isolation of the binding protein of periplocoside E from BBMVs in midgut of the oriental amyworm Mythimna separata walker (Lepidoptera: Noctuidae) through affinity chromatography[J]. Toxins, 2016, 8(5): 139. doi: 10.3390/toxins8050139
    [16] 齐猛, 何振宇, 李任丰, 等. 杀虫活性化合物杠柳新苷P对东方黏虫中肠细胞上结合蛋白的影响[J]. 西北农业学报, 2016, 25(8): 1250-1256. doi: 10.7606/j.issn.1004-1389.2016.08.020

    QI M, HE Z Y, LI R F, et al. Effect of active insecticidal periplocoside P on Mythimna separata midgut cell binding proteins[J]. Acta Agric Boreali-Occidentalis Sin, 2016, 25(8): 1250-1256. doi: 10.7606/j.issn.1004-1389.2016.08.020
    [17] FENG M X, LI Y K, CHEN X T, et al. Comparative proteomic analysis of the effect of periplocoside P from Periploca sepium on brush border membrane vesicles in midgut epithelium of Mythimna separata larvae[J]. Toxins, 2017, 10(1): 7. doi: 10.3390/toxins10010007
    [18] 吴文君. 昆虫拒食剂的生物测定方法[J]. 昆虫知识, 1988, 25(6): 365-367.

    WU W J. Bioassay methods of insect antifeedants[J]. Chin Bull Entomol, 1988, 25(6): 365-367.
    [19] WOLFERSBERGER M, LUETHY P, MAURER A, et al. Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly (Pieris brassicae)[J]. Comp Biochem Physiol Part A: Physiol, 1987, 86(2): 301-308. doi: 10.1016/0300-9629(87)90334-3
    [20] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72: 248-254. doi: 10.1016/0003-2697(76)90527-3
    [21] HAFKENSCHEID J C M. Aminopeptidases and amino acid arylamidases[M]//Bergemayer J. Methods of enzymatic analysis. Weinheim: Verlag Chemie, 1984, 5(3): 2-34.
    [22] LOWRY O H, ROBERTS N R, WU M L, et al. The quantitative histochemistry of brain. II. Enzyme measurements[J]. J Biol Chem, 1954, 207(1): 19-37.
    [23] TIBURCY F, BEYENBACH K W, WIECZOREK H. Protein kinase A-dependent and-independent activation of the V-ATPase in Malpighian tubules of Aedes aegypti[J]. J Exp Biol, 2013, 216(pt 5): 881-891.
    [24] WIECZOREK H, CIOFFI M, KLEIN U, et al. Isolation of goblet cell apical membrane from tobacco hornworm midgut and purification of its vacuolar-type ATPase[J]. Methods Enzymol, 1990, 192: 608-616. doi: 10.1016/0076-6879(90)92098-X
    [25] CHENG D, FENG M X, JI Y F, et al. Effects of celangulin IV and V from Celastrus angulatus Maxim on Na+/K+-ATPase activities of the oriental armyworm (Lepidoptera: Noctuidae)[J]. J Insect Sci, 2016, 16(1): 59. doi: 10.1093/jisesa/iew051
    [26] ANRAKU Y, HIRATA R, WADA Y, et al. Molecular genetics of the yeast vacuolar H(+)-ATPase[J]. J Exp Biol, 1992, 172: 67-81.
    [27] WIECZOREK H, BROWN D, GRINSTEIN S, et al. Animal plasma membrane energization by proton-motive V-ATPases[J]. BioEssays, 1999, 21(8): 637-648. doi: 10.1002/(SICI)1521-1878(199908)21:8<637::AID-BIES3>3.0.CO;2-W
    [28] MERZENDORFER H, GRÄF R, HUSS M, et al. Regulation of proton-translocating V-ATPases[J]. J Exp Biol, 1997, 200(2): 225-235.
    [29] WIECZOREK H, GRBER G, HARVEY W R, et al. Structure and regulation of insect plasma membrane H(+)V-ATPase[J]. J Exp Biol, 2000, 203(1): 127-135.
    [30] KRISHNAMOORTHY M, JURAT-FUENTES J L, MCNALL R J, et al. Identification of novel Cry1Ac binding proteins in midgut membranes from Heliothis virescens using proteomic analyses[J]. Insect Biochem Mol Biol, 2007, 37(3): 189-201. doi: 10.1016/j.ibmb.2006.10.004
    [31] YUAN C, DING X Z, XIA L Q, et al. Proteomic analysis of BBMV in Helicoverpa armigera midgut with and without Cry1Ac toxin treatment[J]. Biocontrol Sci Technol, 2011, 21(2): 139-151. doi: 10.1080/09583157.2010.527318
    [32] McGUIRE C, COTTER K, STRANSKY L, FORGAC M. Regulation of V-ATPase assembly and function of V-ATPases in tumor cell invasiveness[J]. Biochimica et Biophysica Acta, 2016, 1857: 1213-1218. doi: 10.1016/j.bbabio.2016.02.010
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  285
  • HTML全文浏览量:  181
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-22
  • 录用日期:  2020-08-30
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回