• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铜基纳米颗粒在农药领域的潜在应用

董欣欣 姬彦飞 田野 张杰 刘成伟

董欣欣, 姬彦飞, 田野, 张杰, 刘成伟. 铜基纳米颗粒在农药领域的潜在应用[J]. 农药学学报, 2021, 23(2): 259-268. doi: 10.16801/j.issn.1008-7303.2021.0015
引用本文: 董欣欣, 姬彦飞, 田野, 张杰, 刘成伟. 铜基纳米颗粒在农药领域的潜在应用[J]. 农药学学报, 2021, 23(2): 259-268. doi: 10.16801/j.issn.1008-7303.2021.0015
Xinxin DONG, Yanfei JI, Ye TIAN, Jie ZHANG, Chengwei LIU. Potential applications of copper-based nanoparticles in pesticide[J]. Chinese Journal of Pesticide Science, 2021, 23(2): 259-268. doi: 10.16801/j.issn.1008-7303.2021.0015
Citation: Xinxin DONG, Yanfei JI, Ye TIAN, Jie ZHANG, Chengwei LIU. Potential applications of copper-based nanoparticles in pesticide[J]. Chinese Journal of Pesticide Science, 2021, 23(2): 259-268. doi: 10.16801/j.issn.1008-7303.2021.0015

铜基纳米颗粒在农药领域的潜在应用

doi: 10.16801/j.issn.1008-7303.2021.0015
基金项目: 国家自然科学基金国家基础科学人才培养基金项目 (J1210053);哈尔滨市科技创新人才项目 (2017RALXJ010)
详细信息
    作者简介:

    董欣欣,女,硕士研究生,E­mail:dxx@nefu.edu.cn

    通讯作者:

    张杰,通信作者 (Author for correspondence),女,副教授,研究方向为微生物学,E­mail:zhangjie1972@nefu.edu.cn

    刘成伟,共同通信作者 (Co-author for correspondence),男,教授,研究方向为合成生物学,E-mail:liuchw@nefu.edu.cn

  • 中图分类号: S482;TB383;TQ450.2

Potential applications of copper-based nanoparticles in pesticide

  • 摘要: 铜基纳米颗粒是工业上较常制备及使用的纳米材料之一,具有比表面积大、活化能高、活性位点多等特点,因而具备广泛的应用前景。铜基纳米颗粒可以提高植物的营养吸收及生长参数,诱导植物产生系统抗性,因而可作为植物生长调节剂加以应用;同时铜基纳米颗粒对生物细胞也具备一定的生理毒性,可使细胞产生氧化应激反应,并可导致膜崩解,利用这一特性,还可将铜基纳米颗粒用作抑菌剂或除草剂。文章阐述了铜基纳米颗粒的促生长机制、其在生物细胞中造成的生理损害以及相关机理的研究进展,探讨了铜基纳米颗粒在农药领域作为植物生长调节剂、抑菌剂及除草剂应用的可能性,以期为新型农药的研发与生产提供新的思路。
  • 图  1  铜基纳米颗粒对真菌细胞的损伤作用

    Figure  1.  The damage effect of copper-based nanoparticles on mycelium cells

    图  2  铜基纳米颗粒对植物细胞造成的损伤

    Figure  2.  Schematic diagram of damage to plant cells caused by copper-based nanoparticles

    表  1  采用铜基纳米颗粒抑制植物病原菌的相关研究

    Table  1.   Research on inhibition of plant disease pathogens using copper-based nanoparticles

    铜基纳米颗粒类型    
    Copper-based nanoparticles type    
    适用菌种    
    Applicable strains    
    最小抑菌浓度
    Minimum inhibitory concentration/(mg/mL)
    参考文献
    Reference
    纳米铜颗粒 Cu NPs 指状青霉 Penicillium digitatum 0.02 [16]
    腐皮镰刀菌 Fusarium solani 0.06
    灰葡萄孢 Botrytis cinerea 0.50 [34]
    链格孢 Alternaria alternata 10.00 [35]
    灰葡萄孢 Botrytis cinerea 10.00
    腐皮镰刀菌 Fusarium solani 0.10 [36]
    新壳梭孢菌 Neofusicoccum sp. 0.50
    尖孢镰刀菌 Fusarium oxysporum 0.25
    地毯草黄单胞菌 Xanthomonas axonopodis 0.02
    樟疫霉 Phytophthora cinnamomi 0.05 [37]
    丁香假单胞菌 Pseudomonas syringae 0.20
    氧化铜纳米颗粒 CuO NPs 地毯草黄单胞菌 Xanthomonas axonopodis 1.60 [38]
    氧化亚铜纳米颗粒 Cu2O NPs 尖孢镰刀菌 Fusarium oxysporum 0.25 [39]
    铜-壳聚糖纳米颗粒 Cu-chitosan NPs 茄链格孢 Alternaria solani 1.00 [33]
    尖孢镰刀菌 Fusarium oxysporum 1.20
    铜-银双金属纳米颗粒 Cu-Ag NPs 灰葡萄孢 Botrytis cinerea 0.16 [40]
    下载: 导出CSV
  • [1] 张贤明, 杨小平, 欧阳平. 铜基纳米粒子制备的研究进展[J]. 化工新型材料, 2015, 43(1): 210-212.

    ZHANG X M, YANG X P, OUYANG P. Research progress on preparation of copper-based nanoparticles[J]. New Chem Mater, 2015, 43(1): 210-212.
    [2] XU D, LV H, LIU B. Encapsulation of metal nanoparticle catalysts within mesoporous zeolites and their enhanced catalytic performances: a review[J]. Front Chem, 2018, 6: 550. doi: 10.3389/fchem.2018.00550
    [3] LIN Y W, HUANG C C, CHANG H T. Gold nanoparticle probes for the detection of mercury, lead and copper ions[J]. Analyst, 2011, 136(5): 863-871. doi: 10.1039/C0AN00652A
    [4] CHEN C, GENG F, WANG Y, et al. Design of a nanoswitch for sequentially multi-species assay based on competitive interaction between DNA-templated fluorescent copper nanoparticles, Cr3+ and pyrophosphate and ALP[J]. Talanta, 2019, 205: 120132. doi: 10.1016/j.talanta.2019.120132
    [5] HUSSAIN I, SINGH N B, SINGH A, et al. Green synthesis of nanoparticles and its potential application[J]. Biotechnol Lett, 2016, 38(4): 545-560. doi: 10.1007/s10529-015-2026-7
    [6] VÁZQUEZ-BLANCO R, ARIAS-ESTÉVEZ M, BÅÅTH E, et al. Comparison of Cu salts and commercial Cu based fungicides on toxicity towards microorganisms in soil[J]. Environ Pollut, 2020, 257: 113585. doi: 10.1016/j.envpol.2019.113585
    [7] WANG Q Y, SUN J Y, XU X J, et al. Integration of chemical and toxicological tools to assess the bioavailability of copper derived from different copper-based fungicides in soil[J]. Ecotoxicol Environ Saf, 2018, 161: 662-668. doi: 10.1016/j.ecoenv.2018.06.041
    [8] 何永梅. 保护性杀菌剂在防治大棚蔬菜病害中的应用[J]. 山东农药信息, 2019(2): 35-37.

    HE Y M. Application of protective fungicides in the prevention and control of greenhouse vegetable diseases[J]. Shandong Pestic News, 2019(2): 35-37.
    [9] 史双院, 黄晓, 来宽忍, 等. 果园铜制剂农药的使用方法与注意事项[J]. 西北园艺(果树), 2011(1): 43-44.

    SHI S Y, HUANG X, LAI K R, et al. Use method and precautions of orchard copper preparation pesticide[J]. Northwest Hortic, 2011(1): 43-44.
    [10] NOUREEN A, JABEEN F, TABISH T A, et al. Assessment of copper nanoparticles (Cu-NPs) and copper (Ⅱ) oxide (CuO) induced hemato-and hepatotoxicity in Cyprinus carpio[J]. Nanotechnology, 2018, 29(14): 144003. doi: 10.1088/1361-6528/aaaaa7
    [11] 沈惠国. 土壤微量元素对植物的影响[J]. 林业科技情报, 2010, 42(4): 12-14. doi: 10.3969/j.issn.1009-3303.2010.04.006

    SHEN H G. Influence of soil microelement on plant[J]. For Sci Technol Inf, 2010, 42(4): 12-14. doi: 10.3969/j.issn.1009-3303.2010.04.006
    [12] 张志仙, 陈起振, 曹家树. 植物多铜氧化酶及其亚家族成员SKS蛋白[J]. 中国细胞生物学学报, 2011, 33(2): 167-172.

    ZHANG Z X, CHEN Q Z, CAO J S. Process of multicopper oxidase and its subfamily member SKS in plant[J]. Chin J Cell Biol, 2011, 33(2): 167-172.
    [13] 胡丽娜. 微量元素对植物的作用[J]. 现代农业, 2014(7): 25.

    HU L N. The effects of trace elements on plants[J]. Mod Agric, 2014(7): 25.
    [14] NASROLLAHZADEH M, SAJJADI M, DADASHI J, et al. Pd-based nanoparticles: plant-assisted biosynthesis, characterization, mechanism, stability, catalytic and antimicrobial activities[J]. Adv Colloid Interface Sci, 2020, 276: 102103. doi: 10.1016/j.cis.2020.102103
    [15] ANDREOTTI F, MUCHA A P, CAETANO C, et al. Interactions between salt marsh plants and Cu nanoparticles — Effects on metal uptake and phytoremediation processes[J]. Ecotoxicol Environ Saf, 2015, 120: 303-309. doi: 10.1016/j.ecoenv.2015.06.017
    [16] HERNÁNDEZ-HERNÁNDEZ H, GONZÁLEZ-MORALES S, BENAVIDES-MENDOZA A, et al. Effects of chitosan-PVA and Cu nanoparticles on the growth and antioxidant capacity of tomato under saline stress[J]. Molecules, 2018, 23(1): 178. doi: 10.3390/molecules23010178
    [17] CHATTERJEE A K, CHAKRABORTY R, BASU T. Mechanism of antibacterial activity of copper nanoparticles[J]. Nanotechnology, 2014, 25(13): 135101. doi: 10.1088/0957-4484/25/13/135101
    [18] BANIK S, PÉREZ-DE-LUQUE A. In vitro effects of copper nanoparticles on plant pathogens, beneficial microbes and crop plants[J]. Span J Agric Res, 2017, 15(2): e1005. doi: 10.5424/sjar/2017152-10305
    [19] WANG L, HUANG X, SUN W, et al. A global metabolomic insight into the oxidative stress and membrane damage of copper oxide nanoparticles and microparticles on microalga Chlorella vulgaris[J]. Environ Pollut, 2020, 258: 113647. doi: 10.1016/j.envpol.2019.113647
    [20] WU F, HARPER B J, CRANDON L E, et al. Assessment of Cu and CuO nanoparticle ecological responses using laboratory small-scale microcosms[J]. Environ Sci Nano, 2020, 7(1): 105-115. doi: 10.1039/C9EN01026B
    [21] MASOUD R, BIZOUARN T, TREPOUT S, et al. Titanium dioxide nanoparticles increase superoxide anion production by acting on NADPH oxidase[J]. PLoS One, 2015, 10(12): e0144829. doi: 10.1371/journal.pone.0144829
    [22] ABDAL DAYEM A, HOSSAIN M K, LEE S B, et al. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles[J]. Int J Mol Sci, 2017, 18(1): 120. doi: 10.3390/ijms18010120
    [23] SHAIKH S, NAZAM N, RIZVI S M D, et al. Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance[J]. Int J Mol Sci, 2019, 20(10): 2468. doi: 10.3390/ijms20102468
    [24] RASHID M H, CHUNG Y R. Induction of systemic resistance against insect herbivores in plants by beneficial soil microbes[J]. Front Plant Sci, 2017, 8: 1816. doi: 10.3389/fpls.2017.01816
    [25] DERBALAH A, ELSHARKAWY M M, HAMZA A, et al. Resistance induction in cucumber and direct antifungal activity of zirconium oxide nanoparticles against Rhizoctonia solani[J]. Pestic Biochem Physiol, 2019, 157: 230-236. doi: 10.1016/j.pestbp.2019.03.018
    [26] KANG X, WANG L, GUO Y, et al. A comparative transcriptomic and proteomic analysis of hexaploid wheat's responses to colonization by Bacillus velezensis and Gaeumannomyces graminis, both separately and combined[J]. Mol Plant Microbe Interact, 2019, 32(10): 1336-1347. doi: 10.1094/MPMI-03-19-0066-R
    [27] KIM S, SIN H, LEE S, et al. Influence of metal oxide particles on soil enzyme activity and bioaccumulation of two plants[J]. J Microbiol Biotechnol, 2013, 23(9): 1279-1286. doi: 10.4014/jmb.1304.04084
    [28] SINGH N B, SINGH A, HUSSAIN I, et al. Synthesis, characterization and application of ruthenium oxide nanoparticles on growth and metabolism of Brassica oleracea L[J]. Adv Sci Lett, 2015, 21(8): 2635-2640. doi: 10.1166/asl.2015.6430
    [29] HAFEEZ A, RAZZAQ A, MAHMOOD T, et al. Potential of copper nanoparticles to increase growth and yield of wheat[J]. J Nanosci Adv Tech, 2015, 1(1): 6-11. doi: 10.24218/jnat.2015.02
    [30] HERNÁNDEZ-HERNÁNDEZ H, QUITERIO-GUTIÉRREZ T, CADENAS-PLIEGO G, et al. Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants[J]. Plants, 2019, 8(10): 355. doi: 10.3390/plants8100355
    [31] CHOUDHARY R C, KUMARASWAMY R V, KUMARI S, et al. Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.)[J]. Sci Rep, 2017, 7(1): 9754. doi: 10.1038/s41598-017-08571-0
    [32] ZHAO J, REN W, DAI Y, et al. Uptake, distribution, and transformation of CuO NPs in a floating plant Eichhornia crassipes and related stomatal responses[J]. Environ Sci Technol, 2017, 51(13): 7686-7695. doi: 10.1021/acs.est.7b01602
    [33] SINGH A, SINGH N B, HUSSAIN I, et al. Plant-nanoparticle interaction: an approach to improve agricultural practices and plant productivity[J]. IJPSI, 2015, 4(8): 25-40.
    [34] HERMIDA-MONTERO L A, PARIONA N, MTZ-ENRIQUEZ A I, et al. Aqueous-phase synthesis of nanoparticles of copper/copper oxides and their antifungal effect against Fusarium oxysporum[J]. J Hazard Mater, 2019, 380: 120850. doi: 10.1016/j.jhazmat.2019.120850
    [35] OUDA S M. Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea[J]. Research J Microbiology, 2014, 9(1): 34-42. doi: 10.3923/jm.2014.34.42
    [36] PARIONA N, MTZ-ENRIQUEZ A I, SÁNCHEZ-RANGEL D, et al. Green-synthesized copper nanoparticles as a potential antifungal against plant pathogens[J]. RSC Adv, 2019, 9(33): 18835-18843. doi: 10.1039/C9RA03110C
    [37] SAHARAN V, SHARMA G, YADAV M, et al. Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato[J]. Int J Biol Macromol, 2015, 75: 346-353. doi: 10.1016/j.ijbiomac.2015.01.027
    [38] CHIKTE R G, PAKNIKAR K M, RAJWADE J M, et al. Nanomaterials for the control of bacterial blight disease in pomegranate: quo vadis?[J]. Appl Microbiol Biotechnol, 2019, 103(11): 4605-4621. doi: 10.1007/s00253-019-09740-z
    [39] PÉREZ-DE LEÓN A, PLASENCIA J, VÁZQUEZ-DURÁN A, et al. Comparison of the in vitro antifungal and anti-fumonigenic activities of copper and silver nanoparticles against Fusarium verticillioides[J]. J Clust Sci, 2020, 31(1): 213-220. doi: 10.1007/s10876-019-01638-0
    [40] MALANDRAKIS A A, KAVROULAKIS N, CHRYSIKOPOULOS C V. Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens[J]. Sci Total Environ, 2019, 670: 292-299. doi: 10.1016/j.scitotenv.2019.03.210
    [41] MALANDRAKIS A A, KAVROULAKIS N, CHRYSIKOPOULOS C V. Synergy between Cu-NPs and fungicides against Botrytis cinerea[J]. Sci Total Environ, 2020, 703: 135557. doi: 10.1016/j.scitotenv.2019.135557
    [42] CIVARDI C, GROLIMUND D, SCHUBERT M, et al. Micronized copper-treated wood: copper remobilization into spores from the copper-tolerant wood-destroying fungus Rhodonia placenta[J]. Environ Sci : Nano, 2019, 6(2): 425-431. doi: 10.1039/C8EN01110A
    [43] ATHAWALE V, PARALIKAR P, INGLE A P, et al. Biogenically engineered nanoparticles inhibit Fusarium oxysporum causing soft-rot of ginger[J]. IET Nanobiotechnology, 2018, 12(8): 1084-1089. doi: 10.1049/iet-nbt.2018.5086
    [44] OGUNYEMI S O, ABDALLAH Y, ZHANG M, et al. Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 341-352. doi: 10.1080/21691401.2018.1557671
    [45] ALAM T, KHAN R A A, ALI A, et al. Biogenic synthesis of iron oxide nanoparticles via Skimmia laureola and their antibacterial efficacy against bacterial wilt pathogen Ralstonia solanacearum[J]. Mater Sci Eng C Mater Biol Appl, 2019, 98: 101-108. doi: 10.1016/j.msec.2018.12.117
    [46] OCSOY I, PARET M L, OCSOY M A, et al. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans[J]. ACS Nano, 2013, 7(10): 8972-8980. doi: 10.1021/nn4034794
    [47] THIRUVENGADAM M, CHUNG I M, GOMATHI T, et al. Synthesis, characterization and pharmacological potential of green synthesized copper nanoparticles[J]. Bioprocess Biosyst Eng, 2019, 42(11): 1769-1777. doi: 10.1007/s00449-019-02173-y
    [48] SHUAI J, GUAN F, HE B, et al. Self-assembled nanoparticles of symmetrical cationic peptide against Citrus pathogenic bacteria[J]. J Agric Food Chem, 2019, 67(20): 5720-5727.
    [49] NOMAN E, AL-GHEETHI A, TALIP B A, et al. Inactivating pathogenic bacteria in greywater by biosynthesized Cu/Zn nanoparticles from secondary metabolite of Aspergillus iizukae; optimization, mechanism and techno economic analysis[J]. PLoS One, 2019, 14(9): e0221522. doi: 10.1371/journal.pone.0221522
    [50] RAJPUT V, MINKINA T, AHMED B, et al. Interaction of copper-based nanoparticles to soil, terrestrial, and aquatic systems: critical review of the state of the science and future perspectives[J]. Rev Environ Contam Toxicol, 2020, 252: 51-96. doi: 10.1007/398_2019_34
    [51] HALBUS A, HOROZOV T S, PAUNOV V N. Strongly enhanced antibacterial action of copper oxide nanoparticles with boronic acid surface functionality[J]. ACS Appl Mater Interfaces, 2019, 11(13): 12232-12243. doi: 10.1021/acsami.8b21862
    [52] SANTIAGO T R, BONATTO C C, ROSSATO M, et al. Green synthesis of silver nanoparticles using tomato leaf extract and their entrapment in chitosan nanoparticles to control bacterial wilt[J]. J Sci Food Agric, 2019, 99(9): 4248-4259. doi: 10.1002/jsfa.9656
    [53] HUANG Z, RAJASEKARAN P, OZCAN A, et al. Antimicrobial magnesium hydroxide nanoparticles as an alternative to Cu biocide for crop protection[J]. J Agric Food Chem, 2018, 66(33): 8679-8686. doi: 10.1021/acs.jafc.8b01727
    [54] KHAMIS Y, HASHIM A F, MARGARITA R, et al. Fungicidal efficacy of chemically-produced copper nanoparticles against Penicillium digitatum and Fusarium solani on Citrus fruit[J]. Philipp Agric Sci, 2017, 100(1): 69-78.
    [55] ANJUM N A, SINGH H P, KHAN M I R, et al. Too much is bad—an appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions[J]. Environ Sci Pollut Res, 2015, 22(5): 3361-3382. doi: 10.1007/s11356-014-3849-9
    [56] 赵慧博, 李丽丽, 梁塔娜, 等. 重金属铜、镉胁迫下植物响应的研究进展[J]. 安徽农业科学, 2019, 47(21): 14-16. doi: 10.3969/j.issn.0517-6611.2019.21.005

    ZHAO H B, LI L L, LIANG T N, et al. Advances in plant response to heavy metal copper and cadmium stress[J]. J Anhui Agric Sci, 2019, 47(21): 14-16. doi: 10.3969/j.issn.0517-6611.2019.21.005
    [57] TAPKEN W, RAVET K, SHAHBAZ M, et al. Regulation of Cu delivery to chloroplast proteins[J]. Plant Signal Behav, 2015, 10(7): e1046666. doi: 10.1080/15592324.2015.1046666
    [58] RAJPUT V D, MINKINA T, SUSKOVA S, et al. Effects of copper nanoparticles (CuO NPs) on crop plants: a mini review[J]. BioNanoScience, 2018, 8(1): 36-42. doi: 10.1007/s12668-017-0466-3
    [59] ADHIKARI S, ADHIKARI A, GHOSH S, et al. Assessment of ZnO-NPs toxicity in maize: an integrative microRNAomic approach[J]. Chemosphere, 2020, 249: 126197. doi: 10.1016/j.chemosphere.2020.126197
    [60] 傅凤, 刘振乾, 陈传红. 纳米铜粉对浮游植物生长的影响[J]. 生态科学, 2007(2): 126-130. doi: 10.3969/j.issn.1008-8873.2007.02.008

    FU F, LIU Z Q, CHEN C H. Pilot study about effects of copper nanoparticle on phytoplankton growth[J]. Ecol Sci, 2007(2): 126-130. doi: 10.3969/j.issn.1008-8873.2007.02.008
    [61] MÜLLER E, BEHRA R, SIGG L. Toxicity of engineered copper (CuO) nanoparticles to the green alga Chlamydomonas reinhardtii[J]. Environ Chem, 2016, 13(3): 457. doi: 10.1071/EN15132
    [62] PERREAULT F, OUKARROUM A, MELEGARI S P, et al. Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii[J]. Chemosphere, 2012, 87(11): 1388-1394. doi: 10.1016/j.chemosphere.2012.02.046
    [63] ZHAO J, CAO X, LIU X, et al. Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: adhesion, uptake, and toxicity[J]. Nanotoxicology, 2016, 10(9): 1297-1305. doi: 10.1080/17435390.2016.1206149
    [64] WANG Z Y, LI J, ZHAO J, et al. Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter[J]. Environ Sci Technol, 2011, 45(14): 6032-6040. doi: 10.1021/es2010573
    [65] ANDERSON D M, GLIBERT P M, BURKHOLDER J M. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences[J]. Estuaries, 2002, 25(4): 704-726. doi: 10.1007/BF02804901
    [66] 刘毓涵, 姜妲, 黄智恒, 等. 化学液相法制备纳米铜粉的工艺及应用进展研究[J]. 科技创新导报, 2018, 15(26): 108-109.

    LIU Y H, JIANG D, HUANG Z H, et al. Research on preparation of nanometer copper powder by chemical liquid phase method and its application[J]. Sci Technol Innov Her, 2018, 15(26): 108-109.
    [67] 吴盛美, 苏义龙, 马丽雅, 等. 基于微生物生物合成纳米颗粒机制的研究进展[J]. 微生物学通报, 2014, 41(12): 2516-2524.

    WU S M, SU Y L, MA L Y, et al. Synthesis of nanoparticles using microorganisms: a review of its mechanism[J]. Microbiol China, 2014, 41(12): 2516-2524.
    [68] RUBILAR O, RAI M, TORTELLA G, et al. Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications[J]. Biotechnol Lett, 2013, 35(9): 1365-1375. doi: 10.1007/s10529-013-1239-x
    [69] DANANJAYA S H S, ERANDANI W K C U, KIM C H, et al. Comparative study on antifungal activities of chitosan nanoparticles and chitosan silver nano composites against Fusarium oxysporum species complex[J]. Int J Biol Macromol, 2017, 105(pt 1): 478-488.
    [70] DENLUCK L, WU F, CRANDON L E, et al. Reactive oxygen species generation is likely a driver of copper based nanomaterial toxicity[J]. Environ Sci Nano, 2018, 5(6): 1473-1481. doi: 10.1039/C8EN00055G
    [71] TAN J, DUAN M, YADAV T, et al. An R-loop-initiated CSB-RAD52-POLD3 pathway suppresses ROS-induced telomeric DNA breaks[J]. Nucleic Acids Res, 2020, 48(3): 1285-1300. doi: 10.1093/nar/gkz1114
    [72] LIU G, LI L, XU D, et al. Metal-organic framework preparation using magnetic graphene oxide-β-cyclodextrin for neonicotinoid pesticide adsorption and removal[J]. Carbohydr Polym, 2017, 175: 584-591. doi: 10.1016/j.carbpol.2017.06.074
    [73] LIU G Y, LI L Y, GAO Y H, et al. A beta-cyclodextrin-functionalized magnetic metal organic framework for efficient extraction and determination of prochloraz and triazole fungicides in vegetables samples[J]. Ecotoxicol Environ Saf, 2019, 183: 109546. doi: 10.1016/j.ecoenv.2019.109546
    [74] BOUSON S, KRITTAYAVATHANANON A, PHATTHARASU-PAKUN N, et al. Antifungal activity of water-stable copper-containing metal-organic frameworks[J]. Royal Soc Open Sci, 2017, 4(10): 170654. doi: 10.1098/rsos.170654
    [75] WANG F, JING X, ADAMS C A, et al. Decreased ZnO nanoparticle phytotoxicity to maize by arbuscular mycorrhizal fungus and organic phosphorus[J]. Environ Sci Pollut Res Int, 2018, 25(24): 23736-23747. doi: 10.1007/s11356-018-2452-x
    [76] WRIGHT M, ADAMS J, YANG K, et al. A root-colonizing pseudomonad lessens stress responses in wheat imposed by CuO nanoparticles[J]. PLoS One, 2016, 11(10): e0164635. doi: 10.1371/journal.pone.0164635
    [77] ZHU Y, WU J, CHEN M, et al. Recent advances in the biotoxicity of metal oxide nanoparticles: impacts on plants, animals and microorganisms[J]. Chemosphere, 2019, 237: 124403. doi: 10.1016/j.chemosphere.2019.124403
    [78] MA X, GEISLER-LEE J, DENG Y, et al. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation[J]. Sci Total Environ, 2010, 408(16): 3053-3061. doi: 10.1016/j.scitotenv.2010.03.031
    [79] WANG Z Q, HOU L, LIU Y G, et al. Metal contamination in a riparian wetland: distribution, fractionation and plant uptake[J]. Chemosphere, 2018, 200: 587-593. doi: 10.1016/j.chemosphere.2018.02.159
    [80] SUN X, MA T, HAN L, et al. Effects of copper pollution on the phenolic compound content, color, and antioxidant activity of wine[J]. Molecules, 2017, 22(5): 726. doi: 10.3390/molecules22050726
    [81] OZSEKER K, ERUZ C, CıLıZ S. Determination of copper pollution and associated ecological risk in coastal sediments of southeastern black sea region, Turkey[J]. Bull Environ Contam Toxicol, 2013, 91(6): 661-666. doi: 10.1007/s00128-013-1116-2
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  131
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-08
  • 录用日期:  2020-06-28
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回