• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲基硫菌灵和百菌清浸苗防治甘薯黑斑病的影响因素分析

张德胜 白瑞英 乔奇 田雨婷 王永江 王爽 张振臣

张德胜, 白瑞英, 乔奇, 田雨婷, 王永江, 王爽, 张振臣. 甲基硫菌灵和百菌清浸苗防治甘薯黑斑病的影响因素分析[J]. 农药学学报, 2021, 23(2): 331-340. doi: 10.16801/j.issn.1008-7303.2021.0034
引用本文: 张德胜, 白瑞英, 乔奇, 田雨婷, 王永江, 王爽, 张振臣. 甲基硫菌灵和百菌清浸苗防治甘薯黑斑病的影响因素分析[J]. 农药学学报, 2021, 23(2): 331-340. doi: 10.16801/j.issn.1008-7303.2021.0034
Desheng ZHANG, Ruiying BAI, Qi QIAO, Yuting TIAN, Yongjiang WANG, Shuang WANG, Zhenchen ZHANG. Influencing factors of dipping seedling dip with thiophanate-methyl and chlorothalonil against the black rot of sweet potato[J]. Chinese Journal of Pesticide Science, 2021, 23(2): 331-340. doi: 10.16801/j.issn.1008-7303.2021.0034
Citation: Desheng ZHANG, Ruiying BAI, Qi QIAO, Yuting TIAN, Yongjiang WANG, Shuang WANG, Zhenchen ZHANG. Influencing factors of dipping seedling dip with thiophanate-methyl and chlorothalonil against the black rot of sweet potato[J]. Chinese Journal of Pesticide Science, 2021, 23(2): 331-340. doi: 10.16801/j.issn.1008-7303.2021.0034

甲基硫菌灵和百菌清浸苗防治甘薯黑斑病的影响因素分析

doi: 10.16801/j.issn.1008-7303.2021.0034
基金项目: 国家现代农业 (甘薯) 产业技术体系 (CARS-10-B13);河南省农业科学院自主创新基金 (2021ZC38)
详细信息
    作者简介:

    张德胜,男,副研究员,从事植物病害综合防治研究,E­mail:zhangdesheng404@163.com

    通讯作者:

    张振臣,通信作者 (Author for correspondence),男,研究员,从事植物病理学研究,E­mail:zhangzhenchen@126.com

  • 中图分类号: S482.2

Influencing factors of dipping seedling dip with thiophanate-methyl and chlorothalonil against the black rot of sweet potato

  • 摘要: 为分析杀菌剂浸苗时各因素对甘薯黑斑病发生的影响,探讨根据药剂类型优化浸苗技术的必要性,选择内吸性的甲基硫菌灵和非内吸性的百菌清开展浸苗试验,通过单因素试验确定浸苗时间和药液质量浓度对防治效果的影响,通过正交试验比较浸苗时间、药液浓度、孢子浓度对甘薯黑斑病发病的影响,利用浸苗时间与药液浓度的组合试验,探讨浸苗条件与防治效果的变化关系,并在病圃中验证部分试验结论。结果表明:当甲基硫菌灵浸苗时间少于6 h、百菌清浸苗时间少于3 h时,对甘薯黑斑病的防治效果随浸苗时间延长而增加;当甲基硫菌灵药液浓度低于600 mg/L、百菌清药液浓度低于700 mg/L时,对甘薯黑斑病的防治效果随药液浓度提高而增加。使用甲基硫菌灵浸苗时,各因素对薯苗发病的影响由强到弱为孢子浓度>浸苗时间>药液浓度;而使用百菌清浸苗时,则表现为孢子浓度>药液浓度>浸苗时间,三因素对薯苗发病的影响均达到极显著水平。甲基硫菌灵700 mg/L与400 mg/L处理间的防治效果差距随浸苗时间延长逐渐加大,最高相差26.8%;浸苗时间360 min与30 min处理间的防治效果差距也随药液质量浓度的提高而逐渐加大,最高相差42.8%,而百菌清的试验结果无上述两种趋势。病圃验证试验中,甲基硫菌灵和百菌清浸苗6 h处理的防治效果分别达到83.6%和85.2%,单株鲜重分别为60.1 g和58.8 g,均显著高于其他处理;浸苗2 h和10 min时,百菌清的防治效果均显著高于甲基硫菌灵,与盆栽试验结果一致。研究表明,在浸苗防治甘薯黑斑病时,浸苗时间、药液质量浓度、孢子浓度均为影响防治效果的关键因素,各因素对发病的影响随药剂类型的不同而变化。甲基硫菌灵对浸苗时间的要求显著高于百菌清。不同类型杀菌剂需配套相应的浸苗技术才能保证药效发挥。
  • 图  1  浸苗时间对防治效果的影响

    A. 水培法;B. 盆栽法。数据为平均值 ± 标准差。不同小写字母表示处理间在0.05水平存在显著差异。

    Figure  1.  Effect of dipping time on the control efficiency

    A. Hydroponics method; B. Potted planting method. Date were mean ± SD. Different lowercase indicated significant difference among treatments at 0.05 level.

    图  2  药液浓度对防治效果的影响

    A. 水培法;B. 盆栽法。数据为平均值 ± 标准差。不同小写字母表示处理间在0.05水平存在显著差异。

    Figure  2.  Effect of concentrations on the control efficiency

    A. Hydroponics method; B. Potted planting method. Date were mean ± SD. Different lowercase indicated significant difference among treatments at 0.05 level.

    图  3  药液浓度和浸苗时间对防治效果的影响

    A.甲基硫菌灵;B.百菌清。图中数据为平均值 ± 标准差。

    Figure  3.  Effects of dipping time and the concentration on control efficiency

    A thiophanate-methyl; B. chlorothalonil. Date in figure were mean ± SD.

    表  1  正交试验设计方案L9 (34)

    Table  1.   Scheme of orthogonal experiment L9 (34)

    药剂
    Fungicide
    因素
    Factor
    浸苗时间
    Dipping
    time/h
    药液质量浓度
    Pesticide
    concentration/
    (mg/L)
    孢子浓度
    Spore
    concentration/
    (spores/mL)
    甲基硫菌灵
    thiophanate-methyl
    1 2 500 5 × 105
    2 4 650 1 × 106
    3 6 800 1.5 × 106
    百菌清
    chlorothalonil
    1 0.5 350 5 × 105
    2 1.5 500 1 × 106
    3 3 650 1.5 × 106
    下载: 导出CSV

    表  2  甲基硫菌灵浸苗时间与药液浓度处理组合

    Table  2.   Dipping time and concentration of treatment combination with thiophanate-methyl

    药液浓度
    Pesticide concentration (A)
    浸苗时间 Dipping time (B)
    30 min
    (B1)
    120 min
    (B2)
    240 min
    (B3)
    360 min
    (B4)
    400 mg/L (A1)A1B1A1B2A1B3A1B4
    500 mg/L (A2)A2B1A2B2A2B3A2B4
    600 mg/L (A3)A3B1A3B2A3B3A3B4
    700 mg/L (A4)A4B1A4B2A4B3A4B4
    下载: 导出CSV

    表  3  百菌清浸苗时间与药液浓度处理组合

    Table  3.   Dipping time and concentration of treatment combination with chlorothalonil

    药液浓度
    Pesticide concentration (A)
    浸苗时间 Dipping time (B)
    10 min
    (B1)
    30 min
    (B2)
    60 min
    (B3)
    180 min
    (B4)
    300 mg/L (A1)A1B1A1B2A1B3A1B4
    400 mg/L (A2)A2B1A2B2A2B3A2B4
    500 mg/L (A3)A3B1A3B2A3B3A3B4
    600 mg/L (A4)A4B1A4B2A4B3A4B4
    下载: 导出CSV

    表  4  甲基硫菌灵正交试验结果

    Table  4.   Orthogonal experiment outcome using thiophanate-methyl

    处理
    Treatment
    药液浓度 (A)
    Pesticide concentration (A)
    浸苗时间 (B)
    Dipping time (B)
    孢子浓度 (C)
    Spore concentration (C)
    病情指数 (平均值 ± 标准差)
    Disease index (mean ± SD)
    11119.61 ± 1.48
    212221.04 ± 1.88
    313320.03 ± 1.26
    421242.50 ± 2.95
    522325.36 ± 2.14
    62315.56 ± 0.92
    731329.94 ± 1.84
    83215.36 ± 0.71
    933222.26 ± 2.11
    K150.6882.0520.53
    K273.4251.7685.80
    K357.5647.8575.33
    R7.5811.4021.80
    S2181.20467.601638.00
    F F value54.76141.30495.00
    显著性 Significance******
    注 (Note):F0.05 = 4.21, F0.01 = 7.68. “**” 表示对发病的影响达极显著水平(indicates highly significant effects on the occurrence of disease)。
    下载: 导出CSV

    表  5  百菌清正交试验结果

    Table  5.   Orthogonal experiment outcome using chlorothalonil

    处理
    Treatment
    药液浓度 (A)
    Pesticide concentration (A)
    浸苗时间 (B)
    Dipping time (B)
    孢子浓度 (C)
    Spore concentration (C)
    病情指数 (平均值 ± 标准差)
    Disease index (mean ± SD)
    11116.59 ± 0.69
    212211.07 ± 0.71
    313324.64 ± 2.95
    421226.98 ± 1.83
    522327.21 ± 2.04
    62317.90 ± 1.42
    731315.71 ± 2.61
    832110.73 ± 0.65
    93328.54 ± 0.47
    K142.3049.2825.22
    K262.0949.0146.59
    K334.9841.0867.56
    R9.032.7314.1
    S2262.1028.94597.80
    F F value88.459.77201.80
    显著性 Significance******
    注 (Note):F0.05 = 4.21, F0.01 = 7.68. “**” 表示对发病的影响达极显著水平(indicates highly significant effects on the occurrence of disease)。
    下载: 导出CSV

    表  6  回归方程的显著性检验及回归分析

    Table  6.   Significance test and regression analysis of regression equation

    杀菌剂
    Fungicide
    方差分析结果
    Variance analysis results
    回归分析结果
    Regression analysis results
    方差来源
    Soruce of variation
    平方和
    Quadratic sum
    自由度
    Degree of freedom
    均方
    Mean square
    F
    甲基硫菌灵 thiophanate-methyl 回归 Regression 3743.40 2 1871.70 84.31 R 0.96
    P < 0.0001
    剩余 Residue 288.61 13 22.20 tX1 6.42
    总和 Total 4032.01 15 268.80 tX2 11.29
    百菌清 chlorothalonil 回归 Regression 3368.38 2 1684.19 83.36 R 0.96
    P < 0.0001
    剩余 Residue 262.66 13 20.20 tX1 11.93
    总和 Total 3631.03 15 242.07 tX2 4.93
    注 (Note):F0.01(2,13) = 6.70,t0.01 = 3.012。
    下载: 导出CSV

    表  7  不同浸苗时间对甘薯黑斑病田间防治效果及对甘薯鲜重的影响

    Table  7.   Effect of different dipping time on the control efficiency of black rot and fresh weight of sweet potato

    杀菌剂
    Fungicide
    浸苗时间
    Dipping time
    病株率
    Disease incidence/%
    防治效果
    Control efficiency/%
    单株鲜重
    Fresh weight per plant/g
    甲基硫菌灵 thiophanate-methyl 10 min 82.7 −1.6 eE 24.8 cC
    2 h 78 4.1 dD 29.6 cC
    6 h 13.3 83.6 aA 60.1 aA
    百菌清 chlorothalonil 10 min 61.7 24.2 cC 29.8 cC
    2 h 23.7 70.9 bB 46.1 bB
    6 h 12 85.2 aA 58.7 aA
    对照 CK 81.3 25.0 cC
    注:同列数据后不同大写和小写字母分别表示经新复极差法比较在0.01和0.05水平差异显著。Note: Different uppercase or lowercase letters in the same column indicates significant difference at 0.01 level or 0.05 level by the new multiple range test, respectively.
    下载: 导出CSV
  • [1] 中国农业科学院植物保护研究所, 中国植物保护学会. 中国农作物病虫害[M]. 3版. 北京: 中国农业出版社, 2015: 848-852.

    Institute of Plant Protection, Chinese Academy of Agricultural Sciences, China Society of Plant Protection. Crop diseases and insect pests in China[M]. 3rd ed. Beijing: China Agriculture Press, 2015: 848-852.
    [2] 马代夫, 李强, 曹清河, 等. 中国甘薯产业及产业技术的发展与展望[J]. 江苏农业学报, 2012, 28(5): 969-973.

    MA D F, LI Q, CAO Q H, et al. Development and prospect of sweetpotato industry and its technologies in China[J]. Jiangsu J Agric Sci, 2012, 28(5): 969-973.
    [3] 司权民. 番薯 (甘薯) 黑斑病[Ophiostoma fimbriatum (Ell. & Huls.) Nannf.]的防治研究[J]. 植物病理学报, 1956, 2(1): 81-95.

    SI Q M. Studies on the control of black rot (Ophiostoma fimbriatum) of sweet potato[J]. Acta Phytopathol Sin, 1956, 2(1): 81-95.
    [4] 王鸿熙, 刘庆元. 几种农药处理薯苗防治黑斑病试验[J]. 河南农学院学报, 1964(1): 65-70.

    WANG H X, LIU Q Y. Seeding dipping with pesticides for controlling black rot of sweetpotato[J]. J Henan Agric Univ, 1964(1): 65-70.
    [5] 陈延熙. 甘薯黑疤病的苗期防治法[J]. 中国农业科学, 1951(6): 11, 34.

    CHEN Y X. Methods to control black rot of sweetpotato in seedling stage[J]. Sci Agric Sin, 1951(6): 11, 34.
    [6] 防治甘薯黑斑病产品目录. 中国农药信息网[DB/OL]. [2020-03-11]. http://www.chinapesticide.gov.cn/hysj/index.jhtml.

    Product catalogue of control black rot of sweet potato. China pesticide information network[DB/OL]. [2020-03-11]. http://www.chinapesticide.gov.cn/hysj/index.jhtml.
    [7] 张志德, 朱俊光. 粉锈宁防治甘薯黑斑病初步研究[J]. 植物保护学报, 1991, 18(4): 305-310.

    ZHANG Z D, ZHU J G. Preliminary study on the control of Ceratocystis fimbriata of sweetpotato by triadimefon[J]. Acta Phytophylacica Sinica, 1991, 18(4): 305-310.
    [8] 张德胜, 张永超, 乔奇, 等. 10种杀菌剂对甘薯黑斑病的毒力及联合毒力[J]. 农药, 2012, 51(6): 452-454.

    ZHANG D S, ZHANG Y C, QIAO Q, et al. Toxicity and co-toxicity of ten fungicides to Ceratocystis fimbriata[J]. Agrochemicals, 2012, 51(6): 452-454.
    [9] 张德胜, 乔奇, 田雨婷, 等. 5种杀菌剂对储藏期甘薯黑斑病的防效及对薯块的安全性评价[J]. 植物保护, 2015, 41(6): 221-224.

    ZHANG D S, QIAO Q, TIAN Y T, et al. Control efficacy of five fungicides to black rot of sweet potato in storage and safety assessment to storage roots[J]. Plant Prot, 2015, 41(6): 221-224.
    [10] MARTIN W J. Evaluation of fungicides for effectiveness against the sweet potato black rot fungus, Ceratocystis fimbriata[J]. Plant Dis Report, 1971, 55(6): 523-526.
    [11] COLLINS H, ADAMS M L, QUESADA-OCAMPO L M. Evaluation of fungicides for control of black rot in sweetpotato[J]. Plant Dis Manage Report, 2016, 1: V118.
    [12] SCRUGGS A C, BASAIAH T, ADAMS M L, et al. Genetic diversity, fungicide sensitivity, and host resistance to Ceratocystis fimbriata infecting sweetpotato in north Carolina[J]. Plant Dis, 2017, 101(6): 994-1001. doi: 10.1094/PDIS-11-16-1583-RE
    [13] 刘长令, 杨吉春. 现代农药手册[M]. 北京: 化学工业出版社, 2018: 19-22, 534-536.

    LIU C L, YANG J C. Handbook of modern pesticide[M]. Beijing: Chemical Industry Press, 2018: 19-22, 534-536.
    [14] 华南农业大学, 河北农业大学. 植物病理学[M]. 2版.北京: 中国农业出版社, 2000: 184-187.

    South China Agricultural University, Agricultural University of Hebei Province. Plant pathology[M]. 2nd ed. Beijing: China Agriculture Press, 2000: 184-187.
    [15] 张岳, 裴宝珩, 王常任. 药剂浸薯秧防治甘薯黑斑病的研究[J]. 植物保护学报, 1965, 4(3): 195-199.

    ZHANG Y, PEI B H, WANG C R. On the control of the black rot of sweet potato seedlings[J]. Acta Phytophylacica Sinica, 1965, 4(3): 195-199.
    [16] 方树民, 陈玉森, 朱伯昌, 等. 药剂浸苗处理防治甘薯蔓割病的试验[J]. 福建农业大学学报, 1995, 24(4): 420-425.

    FANG S M, CHEN Y S, ZHU B C, et al. Seedling dipping with chemical solutions for controlling Fusarium wilt of sweet potato[J]. J Fujian Agric Univ, 1995, 24(4): 420-425.
    [17] LEE S, JUNG J K, SEO B Y, et al. Optimal duration of determining the insecticidal effect of carbofuran on Nilaparvata lugens using different application methods[J]. Korean J Appl Entomol, 2017, 56(4): 351-356.
    [18] FOSTER J M, HAUSBECK M K. Managing Phytophthora crown and root rot in bell pepper using fungicides and host resistance[J]. Plant Dis, 2010, 94(6): 697-702. doi: 10.1094/PDIS-94-6-0697
    [19] 顾中言, 徐德进, 徐广春. 田间药液用量影响农药单位剂量防治效果的原因分析[J]. 中国农业科学, 2018, 51(13): 2513-2523.

    GU Z Y, XU D J, XU G C. The cause of influence of spray volume on control effect of pesticide unit dose in rice fields[J]. Sci Agric Sin, 2018, 51(13): 2513-2523.
    [20] 张德胜, 王永江, 王爽, 等. 9种生物制剂对甘薯长喙壳菌的抑制作用及防治效果[J]. 中国生物防治学报, 2017, 33(5): 681-685.

    ZHANG D S, WANG Y J, WANG S, et al. Inhibitory activities and control efficacy of nine biopesticides to Ceratocystis fimbriata Ellis et Halsted[J]. Chin J Biol Control, 2017, 33(5): 681-685.
    [21] 张德胜, 张振臣, 田雨婷, 等. 一套评价杀菌剂对薯苗黑斑病防治效果的方法: CN108375658B[P]. 2018-08-07.

    ZHANG D S, ZHANG Z C, TIAN Y T, et al. Method for evaluation prevention and control effect of fungicide on black rot of sweet potato seedlings: CN108375658B [P]. 2018-08-07.
    [22] 唐启义, 冯明光. 实用统计分析及其DPS数据处理系统[M]. 北京: 科学出版社, 2002.

    TANG Q Y, FENG M G. DPS data processing system for practical statistics[M]. Beijing: Science Press, 2002.
    [23] 江苏省农业科学院, 山东省农业科学院. 中国甘薯栽培学[M]. 上海: 上海科学技术出版社, 1984.

    Jiangsu Academy of Agricultural Sciences, Shandong Academy of Agricultural Sciences. Sweet potato production in China[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1984.
    [24] 史彩华, 胡静荣, 杨玉婷, 等. 不同药剂和施药方法对韭蛆的田间防治效果[J]. 植物保护学报, 2018, 45(2): 282-289.

    SHI C H, HU J R, YANG Y T, et al. Field control efficacy of various pesticides and different application methods against Chinese chive gnat Bradysia odoriphaga[J]. J Plant Prot, 2018, 45(2): 282-289.
    [25] 李建厂, 李永红, 张振兰. 新型油菜化学杂交剂SX-1施用技术方法比较研究[J]. 江西农业学报, 2019, 31(7): 69-74.

    LI J C, LI Y H, ZHANG Z L. Comparative study on application technical methods of new chemical hybridizer SX-1 in rapeseed[J]. Acta Agric Jiangxi, 2019, 31(7): 69-74.
    [26] 张青, 杨代凤, 周新伟, 等. 2.5%高效氯氟氰菊酯不同剂型防治水稻害虫效果比较[J]. 江苏农业科学, 2006, 34(4): 41-42. doi: 10.3969/j.issn.1002-1302.2006.04.016

    ZHANG Q, YANG D F, ZHOU X W, et al. Comparison of disposal effects by different forms of 2.5% cyhalothrin to rice pest[J]. Jiangsu Agric Sci, 2006, 34(4): 41-42. doi: 10.3969/j.issn.1002-1302.2006.04.016
    [27] FISHER R W, MENZIES D R, HERNE D C, et al. Parameters of dicofol spray deposit in relation to mortality of European red mite[J]. J Econ Entomol, 1974, 67(1): 124-126. doi: 10.1093/jee/67.1.124
    [28] 袁会珠, 杨代斌, 闫晓静, 等. 农药有效利用率与喷雾技术优化[J]. 植物保护, 2011, 37(5): 14-20. doi: 10.3969/j.issn.0529-1542.2011.05.002

    YUAN H Z, YANG D B, YAN X J, et al. Pesticide efficiency and the way to optimize the spray application[J]. Plant Prot, 2011, 37(5): 14-20. doi: 10.3969/j.issn.0529-1542.2011.05.002
    [29] 徐德进, 顾中言, 徐广春, 等. 雾滴密度及大小对氯虫苯甲酰胺防治稻纵卷叶螟效果的影响[J]. 中国农业科学, 2012, 45(4): 666-674. doi: 10.3864/j.issn.0578-1752.2012.04.007

    XU D J, GU Z Y, XU G C, et al. Effects of droplet density and droplet size on control efficiency of chlorantraniliprole against Cnaphalocrocis medinalis (Guenée)[J]. Sci Agric Sin, 2012, 45(4): 666-674. doi: 10.3864/j.issn.0578-1752.2012.04.007
    [30] 孔肖, 闫晓静, 杨代斌, 等. 丙环唑和醚菌酯药液浓度、雾滴密度与其对小麦白粉病防效的关系[J]. 农药学学报, 2018, 20(3): 301-308.

    KONG X, YAN X J, YANG D B, et al. Effects of concentration, droplet density of propiconazole and kresoxim-methyl on the efficacy against wheat powdery mildew[J]. Chin J Pestic Sci, 2018, 20(3): 301-308.
  • 加载中
图(3) / 表(7)
计量
  • 文章访问数:  470
  • HTML全文浏览量:  232
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-23
  • 录用日期:  2020-08-07
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回