• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1S,2R-((3-溴苯乙基) 氨基)-N-(4-氯-2-三氟甲基苯基) 环己烷基-1-磺酰胺对灰葡萄孢的抑菌活性及作用方式

彭景楠 张华中 李常乐 李兴海 祁之秋

彭景楠, 张华中, 李常乐, 李兴海, 祁之秋. 1S,2R-((3-溴苯乙基) 氨基)-N-(4-氯-2-三氟甲基苯基) 环己烷基-1-磺酰胺对灰葡萄孢的抑菌活性及作用方式[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2021.0055
引用本文: 彭景楠, 张华中, 李常乐, 李兴海, 祁之秋. 1S,2R-((3-溴苯乙基) 氨基)-N-(4-氯-2-三氟甲基苯基) 环己烷基-1-磺酰胺对灰葡萄孢的抑菌活性及作用方式[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2021.0055
Jingnan PENG, Huazhong ZHANG, Changle LI, Xinghai LI, Zhiqiu QI. Antifungal activity of compound 1S,2R-((3-bromophenethyl)amino)-N-(4-chloro-2-trifluoromethylphenyl) cyclohexane-1-sulfonamide against Botrytis cinerea and its mode of action[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2021.0055
Citation: Jingnan PENG, Huazhong ZHANG, Changle LI, Xinghai LI, Zhiqiu QI. Antifungal activity of compound 1S,2R-((3-bromophenethyl)amino)-N-(4-chloro-2-trifluoromethylphenyl) cyclohexane-1-sulfonamide against Botrytis cinerea and its mode of action[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2021.0055

1S,2R-((3-溴苯乙基) 氨基)-N-(4-氯-2-三氟甲基苯基) 环己烷基-1-磺酰胺对灰葡萄孢的抑菌活性及作用方式

doi: 10.16801/j.issn.1008-7303.2021.0055
基金项目: 国家自然科学基金 (31772187)
详细信息
    作者简介:

    彭景楠,男,硕士研究生,E-mail:pjn941160@163.com

    通讯作者:

    祁之秋,通信作者 (Author for correspondence),女,副教授,主要从事农药毒理及抗药性研究,E-mail:2001500063@syau.edu.cn

  • 中图分类号: S436.412;TQ450.2

Antifungal activity of compound 1S,2R-((3-bromophenethyl)amino)-N-(4-chloro-2-trifluoromethylphenyl) cyclohexane-1-sulfonamide against Botrytis cinerea and its mode of action

  • 摘要: 研究了磺酰胺类化合物1S,2R-((3-溴苯乙基) 氨基)-N-(4-氯-2-三氟甲基苯基) 环己烷基-1-磺酰胺 (以下简称SYAUP-CN-26) 的抑菌活性及防治病害的作用方式。结果表明,SYAUP-CN-26可抑制多种植物病原真菌的菌丝生长和孢子萌发,尤以对灰葡萄孢Botrytis cinerea的抑制活性较强,EC50值分别为1.82 μg/mL和14.98 μg/mL。20 μg/mL的SYAUP-CN-26处理能显著降低灰葡萄孢的产孢量、产菌核量和单菌核重。经该化合物处理过的灰葡萄孢孢子及菌丝致病力均降低。200 μg/mL的SYAUP-CN-26对番茄灰霉病的保护效果和治疗效果分别为83.11%和47.5%,保护活性优于治疗活性。
  • 1  SYAUP-CN-26的结构式

    1.  Structural formula of SYAUP-CN-26

    图  1  化合物SYAUP-CN-26对灰葡萄孢菌丝 (A) 及灰葡萄孢孢子 (B) 致病力的影响

    Figure  1.  The pathogenicity of B. cinerea mycelia (A) and sporetreated (B) by SYAUP-CN-26

    图  2  SYAUP-CN-26对番茄灰霉病的保护 (A) 和治疗 (B) 作用

    Figure  2.  Protective (A) and curative (B) effects of SYAUP-CN-26 against tomato gray mold

    表  1  化合物SYAUP-CN-26对植物病原真菌菌丝生长的敏感性

    Table  1.   Sensitivity of plant pathogenic fungi to SYAUP-CN-26

    病原菌     
    Pathogens     
    毒力回归方程
    Regression equation
    相关系数
    r
    EC50值 (95%置信限)
    EC50 value
    (95% confidence interval)/(μg/mL)
    EC90值 (95%置信限
    EC90 value
    (95% confidence interval)/(μg/mL)
    灰葡萄孢 Botrytis cinerea Y = 4.6762 + 1.2473X 0.9766 1.82(1.44~2.30) 19.25(15.29~24.56)
    花生白绢病菌 Sclerotium rolfsii Y = 3.4545 + 1.4012X 0.9988 12.68(10.62~16.17) 104.1(81.39~123.9)
    人参菌核病菌 Sclerotinia schinseng Y = 3.2997 + 1.2412X 0.9810 23.43(18.60~29.38) 251.3(200.5~316.8)
    人参锈腐病菌 Cylindrocarpon destructans Y = 3.1496 + 1.2051X 0.9926 34.30(26.42~44.55) 395.8(306.4~516.7)
    黄瓜褐斑病菌 Corynespora cassiicola Y = 3.3073 + 1.0969X 0.9365 35.02(26.30~46.26) 487.9(387. 5~681. 6)
    水稻纹枯病菌 Rhizoctonia solani Y = 3.9120 + 0.6847X 0.9444 38.82(24.28~62.27) 2830(2197~3609)
    黄瓜枯萎病菌 Fusarium oxysporum Y = 2.9421 + 1.2138X 0.9806 49.61(36.60~67.17) 558.6(416.1~763.6)
    稻瘟病菌 Pyricularia oryzae Y = 3.5202 + 0.8721X 0.9919 49.76(32.65~75.88) 1465(960.4~2232)
    辣椒疫霉 Phytophthora capsici Y = 3.3482 + 0.9451X 0.9754 55.91(34.50~83.21) 1258(873.9~1534)
    下载: 导出CSV

    表  2  化合物SYAUP-CN-26对病原菌孢子萌发的影响

    Table  2.   Effects of SYAUP-CN-26 on spore germination of fungi

    病原菌   
    Pathogens   
    毒力回归方程
    Regression equation
    相关系数
    r
    EC50值 (95%置信限)
    EC50 value
    (95% confidence interval)/(μg/mL)
    EC90值 (95%置信限
    EC90 value
    (95% confidence interval)/(μg/mL)
    灰葡萄孢 B. cinerea Y = 3.7174 + 1.0910X 0.9955 14.98(12.21~18.31) 223.8(183.8~276.2)
    黄瓜枯萎病菌 F. oxysporum Y = 1.7856 + 1.8078X 0.9796 59.80(47.98~75.24) 298.5(234.4~367.6)
    黄瓜褐斑病菌 C. cassiicola Y = 3.2106 + 1.1586X 0.9857 35.06(28.80~43.73) 447.1(386.5~493.5)
    人参锈腐病菌 C. destructans Y = 3.6072 + 0.8177X 0.9885 50.52(42.37~61.42) 1860(1574~2368)
    稻瘟病菌 P. oryzae Y = 2.8696 + 1.4464X 0.9695 29.85(23.28~39.98) 221.8(193.7~253.9)
    辣椒疫霉 P. capsici Y = 2.2174 + 2.0450X 0.9942 22.97(18.75~28.65) 175.4(123.5~212.6)
    下载: 导出CSV

    表  3  SYAUP-CN-26对灰葡萄孢孢子及菌核产量的影响

    Table  3.   Effect of SYAUP-CN-26 on sporulation and sclerotium formation of B. cinerea

    质量浓度
    Concentration/
    (μg/mL)
    孢子产量
    Sporulation/
    (106个/mL)
    菌核个数
    Number of
    sclerotiarotia
    单个菌核质量
    Mass of
    sclerotia/mg
    CK3.75 a106.73 a2.69 a
    0.6253.25 b107.02 a2.93 b
    2.50.67 c112.71 a3.33 c
    200 d82.57 b4.91 d
    注:表中同列数据后标相同小写字母者表示经Duncan氏新复极差测验,在p = 0.05水平上差异不显著。Note: Data in a column followed by the same letters are not significantly different at p = 0.05 by Duncan's multiple range test, respectively.
    下载: 导出CSV

    表  4  磺酰胺类化合物SYAUP-CN-26对灰葡萄孢致病力的影响

    Table  4.   The pathogenicity of B. cinerea treated bySYAUP-CN-26

    质量浓度
    Concentration
    (μg/mL)
    菌丝
    Hyphal
    分生孢子
    Conidium
    病斑直径
    Lesion
    diameter/mm
    抑制率
    Inhibition
    rate/%
    病情指数
    Disease
    index
    抑制率
    Inhibition
    rate/%
    CK10.35 a64.67 a
    1.8238.70 b15.9459.67 b7.73
    19.2637.30 c29.4747.76 c26.15
    注:表中同列数据后标相同小写字母者表示经Duncan氏新复极差测验,在p = 0.05水平上差异不显著。Note: Data in a column followed by the same letters are not significantly different at p = 0.05 by Duncan's multiple range test, respectively.
    下载: 导出CSV

    表  5  SYAUP-CN-26对番茄灰霉病的保护与治疗作用

    Table  5.   Protective and curative effects of SYAUP-CN-26 against tomato gray mold

    质量浓度 (μg/mL)
    Concentation
    保护作用
    Protective effects
    治疗作用
    Curative effects
    病情指数
    Diease
    index
    防治效果
    Control
    efficacy/%
    病情指数
    Diease
    index
    防治效果
    Control
    efficacy/%
    CK 61.41 63.67
    100 33.99 44.65 b 46.21 27.31 b
    200 10.37 83.11 a 33.37 47.52 a
    注:表中同列数据后标相同小写字母者表示经Duncan氏新复极差测验,在p = 0.05水平上差异不显著。Note: Data in a column followed by the same letters are not significantly different at p = 0.05 by Duncan's multiple range test, respectively.
    下载: 导出CSV
  • 戴卓男, 苗晗, 李宝聚, 等. 黄瓜抗灰霉病育种研究进展[J]. 中国蔬菜, 2020(7): 15-23.

    DAI Z N, MIAO H, LI B J, et al. Research progress on cucumber breeding with resistance to grey mould[J]. China Veg, 2020(7): 15-23.
    纪军建, 张小风, 王文桥. 番茄灰霉病菌对咯菌腈的抗性诱变及抗药突变体的生物学特性[J]. 农药学学报, 2012, 14(5): 497-502. doi: 10.3969/j.issn.1008-7303.2012.05.05

    JI J J, ZHANG X F, WANG W Q. Induced mutation of Botrytis cinerea resistant to fludioxonil and biological characteristics of resistant mutants[J]. Chin J Pestic Sci, 2012, 14(5): 497-502. doi: 10.3969/j.issn.1008-7303.2012.05.05
    FARETRA F, POLLASTRO S. Genetic basis of resistance to benzimidazole and dicarboximide fungicides in Botryotinia fuckeliana (Botrytis cinerea)[J]. Mycol Res, 1991, 95(8): 943-951. doi: 10.1016/S0953-7562(09)80091-9
    POMMER E H, LORENZ G. Resistance of Botrytis cinerea Pers. to dicarboximide fungicides: a literature review[J]. Crop Prot, 1982, 1(2): 221-230. doi: 10.1016/0261-2194(82)90044-8
    CHAPELAND F, FRITZ R, LANEN C, et al. Inheritance and mechanisms of resistance to anilinopyrimidine fungicides in Botrytis cinerea (Botryotinia fuckeliana)[J]. Pestic Biochem Physiol, 1999, 64(2): 85-100. doi: 10.1006/pest.1999.2414
    JIANG J H, DING L S, MICHAILIDES T J, et al. Molecular characterization of field azoxystrobin-resistant isolates of Botrytis cinerea[J]. Pestic Biochem Physiol, 2009, 93(2): 72-76. doi: 10.1016/j.pestbp.2008.11.004
    MICCOLIS ANGELINI R M, HABIB W, ROTOLO C, et al. Selection, characterization and genetic analysis of laboratory mutants of Botryotinia fuckeliana (Botrytis cinerea) resistant to the fungicide boscalid[J]. Eur J Plant Pathol, 2010, 128(2): 185-199. doi: 10.1007/s10658-010-9643-8
    王美怡, 李正名. 新型2-甲氧羰基-5-芳甲亚胺基苯磺酰胺的合成及其生物活性[J]. 合成化学, 2012, 20(1): 65-68. doi: 10.3969/j.issn.1005-1511.2012.01.016

    WANG M Y, LI Z M. Synthesis and bioactivities of novel 2-methoxycarbonyl-5-arylazomethine benzenesulfonamide[J]. Chin J Synth Chem, 2012, 20(1): 65-68. doi: 10.3969/j.issn.1005-1511.2012.01.016
    COX S D, MANN C M, MARKHAM J L, et al. Determining the antimicrobial actions of tea tree oil[J]. Molecules, 2001, 6(2): 87-91.
    TRUMPOWER B L, GENNIS R B. Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration: The enzymology of coupling electron transfer reactions to transmembrane proton translocation[J]. Annu Rev Biochem, 1994, 63: 675-716. doi: 10.1146/annurev.bi.63.070194.003331
    TANAKA S, KOCHI S I, KUNITA H, et al. Biological mode of action of the fungicide, flusulfamide, against Plasmodiophora brassicae (clubroot)[J]. Eur J Plant Pathol, 1999, 105(6): 577-584. doi: 10.1023/A:1008722005570
    MITANI S, ARAKI S, YAMAGUCHI T, et al. Antifungal activity of the novel fungicide cyazofamid against Phytophthora infestans and other plant pathogenic fungi in vitro[J]. Pestic Biochem Physiol, 2001, 70(2): 92-99. doi: 10.1006/pest.2001.2541
    HONDA T, HASUNUMA N, TANAKA A, et al. Characteristics of amisulbrom as a foliar use fungicide on Oomycetes disease[R]. PPO-Special Report no. 13. Proceedings of the Eleventh EuroBlight workshop. Hamar, Norway, 28-31, 10, 2008.269-274.
    CAI N, LIU C X, FENG Z H, et al. Design, synthesis, and SAR of novel 2-glycinamide cyclohexyl sulfonamide derivatives against Botrytis cinerea[J]. Molecules, 2018, 23(4): E740. doi: 10.3390/molecules23040740
    PENG J N, WANG K, FENG T Y, et al. The effect of (1S, 2R-((3-bromophenethyl)amino)-N-(4-chloro-2-trifluoromethylphenyl) cyclohexane-1-sulfonamide) on Botrytis cinerea through the membrane damage mechanism[J]. Molecules, 2019, 25(1): 94. doi: 10.3390/molecules25010094
    CAI N, HE L, WANG K, et al. Novel sulfonamides against Botrytis cinerea with no positive cross-resistance to commercial fungicides: design, synthesis and SAR study[J]. Bioorg Med Chem Lett, 2020, 30(4): 126859. doi: 10.1016/j.bmcl.2019.126859
    祁之秋, 鞠雪娇, 纪明山, 等. 辽宁省稻瘟病菌对咪鲜胺敏感基线的建立[J]. 农药学学报, 2012, 14(6): 673-676. doi: 10.3969/j.issn.1008-7303.2012.06.15

    QI Z Q, JU X J, JI M S, et al. Sensitive baseline of Magnaporthe grisea to prochloraz in Liaoning Province[J]. Chin J Pestic Sci, 2012, 14(6): 673-676. doi: 10.3969/j.issn.1008-7303.2012.06.15
    陈雨, 张文芝, 周明国. 氰烯菌酯对禾谷镰孢菌分生孢子萌发及菌丝生长的影响[J]. 农药学学报, 2007, 9(3): 235-239. doi: 10.3321/j.issn:1008-7303.2007.03.006

    CHEN Y, ZHANG W Z, ZHOU M G. Effects of JS399-19 on conidial germination and mycelial growth of Fusarium graminearum[J]. Chin J Pestic Sci, 2007, 9(3): 235-239. doi: 10.3321/j.issn:1008-7303.2007.03.006
    SANG C W, REN W C, WANG J J, et al. Detection and fitness comparison of target-based highly fludioxonil-resistant isolates of Botrytis cinerea from strawberry and cucumber in China[J]. Pestic Biochem Physiol, 2018, 147: 110-118. doi: 10.1016/j.pestbp.2018.01.012
    JI D C, CHEN T, MA D Y, et al. Inhibitory effects of methyl thujate on mycelial growth of Botrytis cinerea and possible mechanisms[J]. Postharvest Biol Technol, 2018, 142: 46-54. doi: 10.1016/j.postharvbio.2018.04.003
    陈凤平, 韩平, 张真真, 等. 啶菌噁唑对番茄灰霉病菌的抑菌作用研究[J]. 农药学学报, 2010, 12(1): 42-48. doi: 10.3969/j.issn.1008-7303.2010.01.06

    CHEN F P, HAN P, ZHANG Z Z, et al. Studies on antifungal activity of fungicide 5-(4-chlorophenyl)-2, 3-dimethyl-3-(pyridine-3)-oxazoline aganist Botrytis cinerea[J]. Chin J Pestic Sci, 2010, 12(1): 42-48. doi: 10.3969/j.issn.1008-7303.2010.01.06
    ESSGHAIER B, FARDEAU M L, CAYOL J L, et al. Biological control of grey mould in strawberry fruits by halophilic bacteria[J]. J Appl Microbiol, 2009, 106(3): 833-846. doi: 10.1111/j.1365-2672.2008.04053.x
    赵杨, 苗则彦, 李颖, 等. 番茄灰霉病防治研究进展[J]. 中国植保导刊, 2014, 34(7): 21-29. doi: 10.3969/j.issn.1672-6820.2014.07.005

    ZHAO Y, MIAO Z Y, LI Y, et al. Research progress on controlling against tomato gray mold[J]. China Plant Prot, 2014, 34(7): 21-29. doi: 10.3969/j.issn.1672-6820.2014.07.005
    李兴海, 祁之秋, 钟昌继, 等. 苯甲酰基甲磺酰胺的合成与杀菌活性[J]. 农药学学报, 2008, 10(2): 136-140. doi: 10.3321/j.issn:1008-7303.2008.02.003

    LI X H, QI Z Q, ZHONG C J, et al. The synthesis and fungicidal activity of benzoyl methanesulfonamides[J]. Chin J Pestic Sci, 2008, 10(2): 136-140. doi: 10.3321/j.issn:1008-7303.2008.02.003
    祁之秋, 孙青彬, 李兴海, 等. N-(2,4,5-三氯苯基)-2-氧代环己烷基磺酰胺对灰葡萄孢的抑制作用[J]. 农药学学报, 2014, 16(5): 523-528. doi: 10.3969/j.issn.1008-7303.2014.05.05

    QI Z Q, SUN Q B, LI X H, et al. Inhibitory effect of N-(2,4,5-trichlorophenyl)-2-oxocyclohexylsulfonamide against Botrytis cinerea[J]. Chin J Pestic Sci, 2014, 16(5): 523-528. doi: 10.3969/j.issn.1008-7303.2014.05.05
    孟司奇, 杨永贵, 纪明山, 等. N-(2-三氟甲基-4-氯苯基)-2-吡唑酰氨基环己烷基磺酰胺类化合物的合成与杀菌活性[J]. 农药学学报, 2018, 20(5): 568-576.

    MENG S Q, YANG Y G, JI M S, et al. Synthesis and fungicidal activity of N-(2-trifluoromethyl-4-chlorophenyl)-2-pyrazoleamide cyclohexylsulfonamides[J]. Chin J Pestic Sci, 2018, 20(5): 568-576.
  • 加载中
计量
  • 文章访问数:  182
  • HTML全文浏览量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-29
  • 录用日期:  2020-12-28
  • 网络出版日期:  2021-01-09

目录

    /

    返回文章
    返回