• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

导向农药分子设计及传导分布机制研究进展

肖永欣 李俊凯

肖永欣, 李俊凯. 导向农药分子设计及传导分布机制研究进展[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2021.0072
引用本文: 肖永欣, 李俊凯. 导向农药分子设计及传导分布机制研究进展[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2021.0072
Yongxin XIAO, Junkai LI. Research progress on molecule design and conduction distribution mechanism of guided pesticide[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2021.0072
Citation: Yongxin XIAO, Junkai LI. Research progress on molecule design and conduction distribution mechanism of guided pesticide[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2021.0072

导向农药分子设计及传导分布机制研究进展

doi: 10.16801/j.issn.1008-7303.2021.0072
基金项目: 国家重点研发计划 (2018YFD0200506)
详细信息
    作者简介:

    肖永欣,男,博士研究生,主要从事内吸传导性农药作用机理研究,E­mail:xiaoyongxin232013@126.com

    通讯作者:

    李俊凯,通信作者 (Author for correspondence),男,博士,教授,主要从事新农药创制与开发研究,E­mail:junkaili@sina.com

  • 中图分类号: S482;TQ450.11

Research progress on molecule design and conduction distribution mechanism of guided pesticide

  • 摘要: 导向农药是可在植物体内向特定部位定向传导的农药。通过改善外源物质的传导性 (尤其是韧皮部传导性) 可显著提高导向农药在植物体内的系统性分布,有利于实现精准防控。文章综述了导向农药的分子设计理念、糖基导向农药和氨基酸导向农药的韧皮部传导性及生物活性等方面的研究进展,指出农药分子与相关氨基酸转运蛋白载体之间的构效关系将是今后研究的重点,同时提出可以激发子作为导向基团,研究开发既能在植物体内通过韧皮部传导防治病虫害,同时又能激活寄主防御反应、具有植物激活剂性质的新型导向农药的思路。
  • 图  1  植物韧皮部吸收外源化合物过程中存在的不同传导机制示意图 (转载自文献[32])

    Figure  1.  Different translocation mechanisms of xenobiotics involved in the process of uptake by plant phloem tissue (Reprinted with permission from reference[32]. Delétage-Grandon (2001) Plant Physiology)

    图  2  前体农药理念 (改编自文献 [59])

    Figure  2.  The idea of pro-pesticide (Adapted from reference [59]. Wu (2019) Pest Management Science)

  • [1] DAMAK M, MAHMOUDI S R, HYDER M N, et al. Enhancing droplet deposition though in-sith precipitation[J]. Nature Communic, 2016, 7: 12560. doi: 10.1038/ncomms12560
    [2] 徐汉虹, 张志祥, 查友贵. 中国植物性农药开发前景[J]. 农药, 2003(03): 1-10. doi: 10.3969/j.issn.1006-0413.2003.03.001

    XU H H, ZHANG Z X, ZHA Y G, et al. The prospect of botanical pesticides in China[J]. Pesticides, 2003(03): 1-10. doi: 10.3969/j.issn.1006-0413.2003.03.001
    [3] BRÜCK E, ELBERT A, FISCHER R, et al. Movento, an innovative ambimobile insecticide for sucking insect pest control in agriculture: Biological profile and field performance[J]. Crop Protec, 2009, 28(10): 838-844. doi: 10.1016/j.cropro.2009.06.015
    [4] BENNETT A B, SWEGER B L, SPANSWICK R M. Sink to source translocation in soybean[J]. Plant Physiol, 1984, 74(2): 434-436. doi: 10.1104/pp.74.2.434
    [5] JENNER C F. Movement of water and mass transfer into developing grains of wheat[J]. Austrilian Journal of Plant Physiology, 1982, 9(1): 69-82.
    [6] MIX G P, MARSCHNER H. Calciumgehalte in früchten von paprika, bohne, quitte und hagebutte im verlauf des fruchtwachstums[J]. Zeitschrift Für Pflanzenernhrung Und Bodenkunde, 1976, 139: 537-549.
    [7] PATE J S. The carbon and nitrogen nutrition of fruit and seed case studies of selected grain legumes[C]//MURRAY D R. Seed Physiology. Vol 1. New York: Academic Press, 1984: 41-82.
    [8] CRISP C E. Molecular design of systemic insecticides and functional groups in translocation[C]//TAHORI A H. Proceedings of the 2nd International IUPAC Congress on Pesticide Chemistry, Vol 1. Tel Aviv, Israel. New York: Gordon and Breach Science Publishers, 1972: 211-264.
    [9] CRISP C E, LOOK M. Phloem loading and transport of weak acids[C]//GEISSBÜHLER H. Advances in Pesticide Science. New York: Pergamon, 1979, 3: 430-447.
    [10] TYREE M T, PETERSON C A, EDGINGTON L V. A simple theory regarding ambimobility of xenobiotics with special reference to the nematicide, oxamyl[J]. Plant physiol, 1979, 63(2): 367-374. doi: 10.1104/pp.63.2.367
    [11] PETERSON C A, EDGINGTON L V. Entry of pesticides into the plant symplast as measured by their loss from an ambient solution[J]. Pest Manag Sci, 1976, 7(5): 483-491. doi: 10.1002/ps.2780070510
    [12] SHONE M G T, CLARKSON D T, SANDERSON, et al. A comparison of the uptake and translocation of some organic molecules and ions in higher plants[C]//ANDERSON W A. Ion Transport in Plants. New York: Academic Press, 1973: 571-582.
    [13] SHONE M G T, WOOD A V. A comparison of the uptake and translocation of some organic herbicides and a systemic fungicide by barley, I. Absorption in relation to physic-chemical properties[J]. J Exp Bot, 1974, 25: 390-400. doi: 10.1093/jxb/25.2.390
    [14] SHONE M G T, BARTLETT B O, WOOD A V. A comparison of the uptake and translocation of some organic herbicides and a systemic fungicide by barley, II. Relationship between uptake by roots and translocation by shoots[J]. J Exp Bot, 1974, 25: 401-409. doi: 10.1093/jxb/25.2.401
    [15] KLEIER D A. Phloem mobility of xenobiotics. I. Mathematical model unifying the weak acid and intermediate permeability theories[J]. Plant Physiol, 1988, 86: 803-810. doi: 10.1104/pp.86.3.803
    [16] HSU F C, KLEIER D A, MELANDER W R. Phloem mobility of xenobiotics. II. Bioassay testing of the unified mathematical model[J]. Plant Physiol, 1988, 86: 811-816. doi: 10.1104/pp.86.3.811
    [17] HSU F C, KLEIER D A. Phloem mobility of xenobiotics. III. Sensitivity of unified model to plant parameters and application to patented chemical hybridizing agents[J]. Weed Science, 1990, 38: 315-323. doi: 10.1017/S0043174500056587
    [18] GRAYSON B T, KLEIER D A. Phloem mobility of xenobiotics. IV. Modelling of pesticide movement in plants[J]. Pest Manag Sci, 1990, 30(1): 67-79. doi: 10.1002/ps.2780300108
    [19] KLEIER D A. Phloem mobility of xenobiotics. V. Structural requirements for phloem-systemic pesticides[J]. Pest Management Sci, 1994, 42(1): 1-11. doi: 10.1002/ps.2780420102
    [20] KLEIER D A, HSU F C. Phloem mobility of xenobiotics. VII. The design of phloem systemic pesticides[J]. Weed Science, 1996, 44(3): 749-756. doi: 10.1017/S0043174500094637
    [21] BYERS T L, KAMEJI R, RANNELS D E, et al. Multiple pathways for uptake of paraquat, methylglyoxal bis (guanylhydrazone) and polyamines[J]. Am J Physiol, 1987, 252(6): 663-669. doi: 10.1152/ajpcell.1987.252.6.C663
    [22] HART J J, DITOMASO J M, LINSCOTT D L, et al. Transport interactions between paraquat and polyamines in roots of intact maize seedlings[J]. Plant Physiol, 1992, 99(4): 1400-1405. doi: 10.1104/pp.99.4.1400
    [23] PIPKE R, SCHULZ A, AMRHEIN N. Uptake of glyphosate by an Arthrobacter sp[J]. Appl Environl Microbiol, 1987, 53(5): 974-978. doi: 10.1128/AEM.53.5.974-978.1987
    [24] DENIS M-H, DELROT S. Carrier-mediated uptake of glyphosate in broad bean(Vicia faba) via a phosphate transporter[J]. Physiologia Plantarum, 1993, 87(4): 569-575. doi: 10.1111/j.1399-3054.1993.tb02508.x
    [25] PRICE C E. Movement of xenobiotics in plants-perspectives[C]//GEISSBÜHLER H. Advances in pesticide Science. New York: Pergamon. 1979, 3: 430-447.
    [26] 李俊凯, 徐汉虹, 江定心, 等. 吲哚乙酸引导下三唑醇在大豆植株中的传导与积累研究初报[J]. 农药学学报, 2005(3): 70-74.

    LI J K, XU H H, JIANG D X, et al. The prelimininary study of transportation and accumulation of triadimenol in soybean seeding induced by indoleacetic acid[J]. Chin J Pestic Sci, 2005(3): 70-74.
    [27] 李俊凯, 徐汉虹, 谭堂峰, 等. 生长素介导下三唑醇在大豆植株内的传导性[J]. 安徽农业科学, 2009, 37(06): 2446-2448. doi: 10.3969/j.issn.0517-6611.2009.06.047

    LI J K, XU H H, TAN T F, et al. Mobility of the fungicide triadimenol in soybean seeding mediated by auxin[J]. J Anhui Agricl Sci, 2009, 37(06): 2446-2448. doi: 10.3969/j.issn.0517-6611.2009.06.047
    [28] 杨静美, 黄艳媚, 谢梓烁, 等. 新型杀菌剂IAA-多菌灵对3种植物病原真菌的抑菌活性及其对大豆的促根作用[J]. 仲恺农业工程学院学报, 2016, 29(3): 34-37.

    YANG J M, HUANG Y M, XIE Z Y, et al. Antifungal activity of IAA-carbendazol against three phytopathogenic fungi and root-promoting effect on soybean[J]. J Zhongkai Agrotech coll, 2016, 29(3): 34-37.
    [29] HIGGINS C F, PAYNE J W. Peptide transport by germinating barley embryos: Evidence for a single common carrier for di- and oligopeptides[J]. Planta, 1978, 138(3): 217-221. doi: 10.1007/BF00386814
    [30] STEINER H Y, SONG W, ZHANG L, et al. An Arabidopsis peptide transporter is a member of a new class of membrane transport proteins[J]. Plant Cell, 1994, 6(9): 1289.
    [31] JAMAI A, CHOLLET J-F, DELROT S. Proton-peptide co-transport in broad bean leaf tissues[J]. Plant Physiol, 1994, 106(3): 1023-1031. doi: 10.1104/pp.106.3.1023
    [32] DELÉTAGE-GRANDON C, CHOLLET J F, FAUCHER M, et al. Carrier-mediated uptake and phloem systemy of a 350-dalton chlorinated xenobiotic with an alpha-amino acid function[J]. Plant Physiol, 2001, 125: 1620-1632. doi: 10.1104/pp.125.4.1620
    [33] YUAN J G, WU H X, LU M L, et al. Synthesis of a series of monosaccharide-fipronil conjugates and their phloem mobility[J]. J Agric Food Chem, 2013, 61(18): 4236-4241. doi: 10.1021/jf400888c
    [34] 李德亮, 宋高鹏, 卢梦玲. 氟虫腈衍生物-糖基偶合物的合成及其在蓖麻韧皮部的输导性研究[J]. 农药学学报, 2011(5): 453-458. doi: 10.3969/j.issn.1008-7303.2011.05.03

    LI D L, SONG G P, LU M L. Study on the synthesis of the carbohydrate conjugates of fipronil and their phloem mobility in Ricinus communis[J]. Chin J Pestic Sci, 2011(5): 453-458. doi: 10.3969/j.issn.1008-7303.2011.05.03
    [35] QIN P W, WANG J, WANG H, et al. Synthesis of rotenone-o-monosaccharide derivatives and their phloem mobility[J]. J Agric Food Chem, 2014, 62(20): 4521-4527. doi: 10.1021/jf500197k
    [36] LEI Z W, WANG J, MAO G L, et al. Glucose positions affect the phloem mobility of glucose-fipronil conjugates[J]. J Agric Food Chem, 2014, 62(26): 6065-6071. doi: 10.1021/jf5010429
    [37] 李豫丰, 解云, 徐汉虹. 葡萄糖基-氟虫腈偶合物、氟虫腈、噻虫嗪和阿维菌素在大豆木质部的输导性比较[J]. 华南农业大学学报, 2016, 37(2): 84-88. doi: 10.7671/j.issn.1001-411X.2016.02.013

    LI Y F, XIE Y, XU H H. Comparing xylem mobility of four types of pesticides, glucose-fipronil conjugate, fipronil, thiamethoxam and abamectin, in soybean[J]. J South China Agric Univ, 2016, 37(2): 84-88. doi: 10.7671/j.issn.1001-411X.2016.02.013
    [38] WU H X, MARHADOUR S, LEI Z W, et al. Use of D-glucose-fenpiclonil conjugate as a potent and specific inhibitor of sucrose carriers[J]. J Exp Bot, 2017, 68(20): 5599-5613. doi: 10.1093/jxb/erx354
    [39] YANG W, WU H X, XU H H, et al. Synthesis of glucose-fipronil conjugate and its phloem mobility[J]. J Agric Food Chem, 2011, 59(23): 12534-12542. doi: 10.1021/jf2031154
    [40] WYSE R. E, KOMOR E. Mechanism of amino acid uptake by sugarcane suspension cells[J]. Plant Physiol, 1984, 76(4): 865-870. doi: 10.1104/pp.76.4.865
    [41] JOHANNES E, FELLE H. Transport of basic amino acides in Riccia fluitans: Evidence for a second binding site[J]. Planta, 1985, 166(2): 244-251. doi: 10.1007/BF00397355
    [42] LI Z C, BUSH D R. Structural determinants in substrate recognition by proton-amino acid symports in plasma membrane vesicles isolated from sugar beet leaves[J]. Arch Biochem Biophys, 1992, 294(2): 519-526. doi: 10.1016/0003-9861(92)90719-D
    [43] GIROUSSE C, BOURNOVILLE R, BONNEMAIN J -L. Water deficit-induced changes in concentrations in proline and some other amino acids in the phloem sap of alfalfa[J]. Plant Physiol, 1996, 111(1): 109-113. doi: 10.1104/pp.111.1.109
    [44] WU H X, MARHADOUR S, LEI Z W, et al. Vectorization of agrochemicals: amino acid carriers are more efficient than sugar carriers to translocate phenylpyrrole conjugates in the Ricinus system[J]. Environ Sci Pollut Res, 2018, 25: 14336-14349. doi: 10.1007/s11356-016-8107-x
    [45] ZHU X, YU L, HSIANG T, et al. The influence of steric configuration of phenazine-1-carboxylic acid-amino acid conjugates on fungicidal activity and systemicity[J]. Pest Manag Sci, 2019, 75(12): 3323-3330. doi: 10.1002/ps.5455
    [46] JIANGD X, LU X L, HU S, et al. A new derivative of fipronil: Effect of adding a glycinyl group to the 5-amine of pyrazole on phloem mobility and insecticidal activity[J]. Pesti Biochem and Physiol, 2009, 95(3): 126-130. doi: 10.1016/j.pestbp.2009.07.012
    [47] NIU J F, CHEN J, XU Z H, et al. Synthesis and bioactivities of amino acid ester conjugates of phenazine-1-carboxylic acid[J]. Bioorganic & Medicinal Chemistry Letters, 2016, 26(22): 5384-5386.
    [48] 柳豪, 余林花, 熊志鹏, 等. 吩嗪-1-羧酸双酰肼衍生物的合成、杀菌活性及韧皮部的输导性研究[J]. 农药学学报, 2017, 19(3): 290-297.

    LIU H, YU L H, XIONG Z P, et al. Synthesis, fungicidal activity and phloem mobility of phenazine-1-carboxylic acid diacylhydrazine derivative[J]. Chin J Pestic Sci, 2017, 19(3): 290-297.
    [49] NIU J, NIE D, YU D, et al. Synthesis, fungicidal activity and phloem mobility of phenazine-1-carboxylic acid-alanine conjugates[J]. Pestic Biochem and Physiol, 2017, 143: 8-13. doi: 10.1016/j.pestbp.2017.10.004
    [50] YAO G, WEN Y, ZHAO C, et al. Novel amino acid ester-chlorantraniliprole conjugates: design, synthesis, phloem accumulation and bioactivity[J]. Pest Manag Sci, 2017, 73(10): 2131. doi: 10.1002/ps.4592
    [51] YU L H, HUANG D, ZHU X, et al. Design, synthesis, phloem mobility, and bioactivities of a series of phenazine-1-carboxylic acid-amino acid conjugates[J]. Molecules, 2018, 23(9): 2139. doi: 10.3390/molecules23092139
    [52] XIONG Y T, ZHU X, HU J Y, et al. Effect of introducing amino acids into phenazine-1-carboxylic acid on phloem mobility[J]. Nat Prod Res, 2020(15): 1-7.
    [53] XIE Y, ZHAO J L, WANG C W, et al. Glycinergic-fipronil uptake is mediated by an amino acid carrier system and induces the expression of amino acid transporter genes in Ricinus communis seedlings[J]. J Agricl and Food Chem, 2016, 64(19): 3810-3818. doi: 10.1021/acs.jafc.5b06042
    [54] SHENG Q Q, LIU X X, XIE Y, et al. Synthesis of novel amino acid-fipronil conjugates and study on their phloem loading mechanism[J]. Molecules, 2018, 23(4): 778. doi: 10.3390/molecules23040778
    [55] CHEN Y, YAN Y, REN Z F, et al. AtLHT1 transporter can facilitate the uptake and translocation of a glycinergic-chlorantraniliprole conjugate in Arabidopsis thaliana[J]. J Agricl and Food Chem, 2018, 66(47): 12527-12535. doi: 10.1021/acs.jafc.8b03591
    [56] REN Z, CHEN Z, LUO X, et al. Overexpression of AtAAP1 increased the uptake of an alanine-chlorantraniliprole conjugate in Arabidopsis thaliana[J]. Environ Sci Pollut Res Int, 2019, 26(36): 36680-36687. doi: 10.1007/s11356-019-06671-0
    [57] KLEIER D A, GRAYSON B T, HSU F C. The phloem mobility of pesticides[J]. Pest Outlook, 1998, 9: 26-30.
    [58] ALBERT A. Chemical aspects of selective toxicity[J]. Nature, 1958, 182(4633): 421-423. doi: 10.1038/182421a0
    [59] WU H, XU H, MARIVINGT-MOUNIR C, et al. Vectorizing agrochemicals: enhancing bioavailability via carrier-mediated transport[J]. Pest Manag Sci, 2019, 75: 1507-1516. doi: 10.1002/ps.5298
    [60] 陶苒, 李梅彦, 王慧欣, 等. 重组人血白蛋白与小分子药物结合功能研究[J]. 中国生物制品学杂志, 2006, 19(05): 499-501. doi: 10.3969/j.issn.1004-5503.2006.05.020

    TAO R, LI MY, WANG H X, et al. Binding function of recombinant human serum albumin to small molecule drugs[J]. Chin J Biol, 2006, 19(05): 499-501. doi: 10.3969/j.issn.1004-5503.2006.05.020
    [61] WANG W W, ZHOU P Y, MO X C, et al. Induction of defense in cereals by 4-fluorophenoxyacetic acid suppresses insect pest populations and increases crop yields in the field[J]. Proc Natl Acad Sci USA, 2020, 117(20): 12017-12028.
  • 加载中
计量
  • 文章访问数:  17
  • HTML全文浏览量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-20
  • 录用日期:  2020-12-04
  • 网络出版日期:  2021-04-21

目录

    /

    返回文章
    返回