Establishment of sensitivity baseline of Phytophthora infestans to valifenalate and risk assessment of resistance
-
摘要: 为建立致病疫霉Phytophthora infestans (Mont.) de Bary对缬菌胺的敏感基线,采用菌丝生长速率法测定了从河北省、黑龙江省、内蒙古自治区、贵州省和四川省未使用过缬菌胺的地区采集分离的105个致病疫霉菌株对缬菌胺的敏感性;为明确致病疫霉对缬菌胺产生抗性突变体的难易程度,进行了紫外诱导和药剂驯化试验;为明确缬菌胺与常用药剂之间的交互抗性,测定了8个抗缬菌胺突变体及其6个亲本敏感菌株对6种常用杀菌剂的敏感性。结果表明:105株致病疫霉对缬菌胺的EC50值范围为0.0594~0.159 mg/L,平均EC50值为(0.102 ± 0.024) mg/L,不同敏感性菌株的频率呈连续单峰曲线分布,未发现敏感性下降的亚群体,因此可将缬菌胺对105株致病疫霉的平均EC50值作为致病疫霉对缬菌胺的敏感基线;通过紫外诱变敏感菌株菌丝体获得了4个抗缬菌胺的突变体,其抗性水平介于 3.1~14.9倍之间,突变频率为0.54%,通过紫外照射敏感菌株孢子囊悬浮液获得了2个抗性水平分别为8.1倍和8.2倍的抗性突变体,突变频率为1.33 × 10−7;通过在含缬菌胺的黑麦蔗糖琼脂培养基上继代培养敏感菌株11代,获得2个抗性水平分别为3.1倍和9.4倍的抗性突变体。缬菌胺与烯酰吗啉和双炔酰菌胺存在交互抗性,与氟吡菌胺、嘧菌酯、甲霜灵和霜脲氰不存在交互抗性。初步推测致病疫霉对缬菌胺具有低到中等抗性风险,建议在生产上将缬菌胺与其他类型杀菌剂交替或混合使用,以延缓致病疫霉对缬菌胺抗性的产生。Abstract: In order to establish the baseline sensitivity of Phytophthora infestans (Mont.) de Bary to valifenalate, the sensitivities to valifenalate of 105 P.infestans isolates collected from Hebei, Heilongjiang, Guizhou, Sichuan and Inner Mongolia Autonomous Region, where valifenalate had never been used,were determined by mycelial growth rate method. To clarify the difficulty degree of acquisition of valifenalate-resistant mutants in P. infestans, UV mutagensis and fungicide adaptation test were conducted. In order to clarify the patterns of cross-resistance between valifenalate and fungicides regularly used for late blight control, the sensitivities to valifenalate and six fungicides of eight resistant mutants and their six parent sensitive strains were tested. The results showed that the EC50 values ranged from 0.0594 mg/L to 0.159 mg/L and the mean EC50 value of 105 isolates was (0.102±0.024) mg/L. The frequency of sensitivity to valifenalate distributed as a unimodal curve, and there was no subgroup with sensitivity declined, so the mean EC50 value could be regarded as the sensitivity baseline to valifenalate in P. infestans. Four mutants resistant to valifenalate with the resistance factors ranging from 3.2 to 14.9 were obtained through UV-irradiating mycelia of strains sensitive to valifenalate and the resistance mutagenesis frequency was 0.54%. Two mutants resistant with the resistance factors of 8.1 and 8.2 were obtained through UV-irradiating sporangia of strains sensitive to valifenalate and the resistance mutagenesis frequency was 1.33 × 10−7. Two mutants resistant to valifenalate with the resistance factors from 3.1 and 9.4 were obtained through 11 generation subcultures. No cross resistance relationship existed between valifenalate and azoxystrobin or fluopicolide or metalaxyl or cymoxanil, but cross resistance existed between valifenalate and mandipropamid or dimethomorph. It was suggested that P. infestans could have a low to moderate resistance risk to valifenalate. Therefore, valifenalate should be used for late blight in mixtures or rotation with other fungicides of different action mechanisms in production to avoid or delay the buildup of valifenalate resistance in P. infestans.
-
Key words:
- Phytophthora infestans /
- valifenalate /
- sensitivity baseline /
- resistant mutants /
- cross-resistance /
- risk assessment
-
表 1 供试菌株采集时间及地点
Table 1. Collection time and location of the tested strains
地区
Region菌株数
Number of strains采集时间 (年-月) Collection date
(Year-Month)采集地点
Collection locality内蒙古自治区
Inner Mongolia Autonomous Region20 2018-08 锡林郭勒盟多伦县;赤峰市喀喇沁旗 Duolun County, Xilinguole League; Kalaqin Banner, Chifeng City 四川省
Sichuan Province20 2018-08 宜宾市宜宾县;眉山市青神;乐山市犍为县Yibin County, Yibin City; Qingshen County, Meishan City; Qianwei County, Leshan City 贵州省
Guizhou Province15 2018-08 贵阳市花溪区;贵阳市息烽县Huaxi district, Guiyang City; Xifeng County, Guiyang City 河北省
Hebei Province25 2018-08 围场满族蒙古族自治县;张家口市沽源县Weichang Manchu and Mongolian Autonomous County; Guyuan County, Zhangjiakou City 黑龙江省
Heilongjiang Province25 2018-08 齐齐哈尔讷河市;绥化市北林区;大兴安岭加格达奇区Nehe City, Qiqihar; Beilin district, Suihua City; Jiagedaqi district, Greater Khingan Range 表 2 紫外诱变试验亚致死时间的确定
Table 2. Determination of sublethal time in ultraviolet mutagenesis test
紫外照射菌丝体时间Time of UV-irradiating
mycelia/min菌落生长直径Colony diameter/
mm紫外照射孢子囊时间Time of
UV-irradiating sporangia/s菌丝生长疏密程度Degree of colony
density0 31.6 ± 0.54 0 +++++ 10 27.6 ± 0.54 30 ++++ 15 21.6 ± 0.5 60 +++ 20 17.9 ± 0.54 90 ++ 25 11.7 ± 0.6 120 + 30 6.3 ± 0.24 150 − 35 5 ± 0 180 − 注:“−” 表示没有菌丝生长;“+” 表示有极稀疏菌丝生长;“++” 表示有较稀疏的菌丝生长; “+++” 表示有中等密集的菌丝生长;“++++” 表示有较密集的菌丝生长;“+++++” 表示有很密集的菌丝生长.Note:“−” indicates no hypha growth. “+” indicates very thin hypha growth. “++” indicates thinner hypha growth. “+++” indicates mediumly dense hypha growth. “+++++” indicates the denser hypha growth. “+++++” indicates very dense hypha growth. 表 3 致病疫霉亲本菌株GZGY经药剂驯化获得对缬菌胺抗性过程
Table 3. The acquisition of resistance to valifenalate in Phytophthora infestans parent strain GZGY
继代培养代数No. of
subculture最低抑制浓度MIC/
(mg/L)亚致死浓度Sublethal concentration/
(mg/L)亚致死浓度下抑制率Inhibition rate
under sublethal concentration/%有效抑制中浓度
EC50/(mg/L)G0 0.5 0.4 93.1 0.103 G1 0.5 0.4 91.9 0.113 G2 0.5 0.4 90.8 0.125 G3 1 0.8 91.3 0.143 G4 1 0.8 93.8 0.228 G5 2 1.5 90.7 0.319 G6 2 1.5 91.8 0.419 G7 3 2 93.8 0.467 G8 4 3 92.5 0.569 G9 4 3 92.4 0.658 G10 5 4 91.2 0.768 G11 6 5 92.3 0.973 表 4 致病疫霉亲本菌株CFKLQ经药剂驯化获得对缬菌胺抗性过程
Table 4. The acquisition of resistance to valifenalate in P. infestans parent strain CFKLQ
继代培养代数No. of
subculture最低抑制浓度
MIC/(mg/L)亚致死浓度Sublethal concentration/
(mg/L)亚致死浓度下抑制率Inhibition rate
under sublethal concentration/%有效抑制中浓度
EC50/(mg/L)G0 0.4 0.3 91.7 0.109 G1 0.4 0.3 90.7 0.118 G2 0.4 0.3 90.6 0.124 G3 0.5 0.4 91.5 0.160 G4 0.5 0.4 92.9 0.212 G5 0.6 0.5 92.8 0.231 G6 0.6 0.5 92.8 0.245 G7 0.7 0.6 93.8 0.259 G8 0.8 0.7 92.3 0.272 G9 0.9 0.8 91.8 0.297 G10 1.2 1 91.5 0.310 G11 1.2 1 90.7 0.322 表 5 致病疫霉对缬菌胺抗性突变体的抗性水平
Table 5. Resistance factor to valifenalate of the valifenalate-resistant mutants of P. infestans
菌株
Strain毒力回归方程
Toxic regression equation (y=)相关系数
Correlation coefficent, r有效抑制中浓度
EC50/(mg/L)95% 置信区间
Confidence interval of 95%/(mg/L)抗性水平
Resistance factor (RF)GZGY* 1.928x + 6.966 0.975 0.096 0.0762~0.120 — GZGY−UVS 1.978x + 5.208 0.977 0.785 0.683~0.904 8.2 GZGY−FT 1.833x + 5.088 0.961 0.896 0.589~1.361 9.4 SCLS* 1.826x + 6.926 0.982 0.088 0.0729~0.107 — SCLS−UVS 1.809x + 5.262 0.982 0.717 0.691~0.747 8.1 GZXF* 2.335x + 7.274 0.988 0.106 0.0906~0.124 — GZXF−UVM 2.458x + 6.167 0.991 0.335 0.280~0.402 3.2 CFKLQ* 2.317x + 7.266 0.990 0.105 0.0912~0.121 — CFKLQ−FT 2.056x + 6.012 0.976 0.322 0.239~0.433 3.1 CFKLQ−UVM 1.612x + 4.689 0.956 1.560 0.932~2.612 14.8 ND* 1.944x + 6.669 0.986 0.139 0.114~0.168 — ND−UVM 1.638x + 4.652 0.974 1.632 1.0959~2.431 11.8 QN* 2.731x + 7.680 0.994 0.104 0.0947~0.115 — QN−UVM 1.498x + 4.711 0.959 1.559 0.948~2.562 14.9 注: * 代表亲本菌株;ZGY−UVS、SCLS−UVS、GZXF−UVM、CFKLQ−UVM、ND−UVM和QN−UVM分别代表敏感菌株GZGY、SCLS、GZXF、CFKLQ、 ND和QN通过紫外照射诱导获得的抗性突变体;GZGY−FT和CFKLQ−FT分别代表敏感菌株GZGY和CFKLQ通过药剂驯化获得的抗性突变体。Note: *Indicates parental isolate. GZGY−UVS, SCLS−UVS, GZXF−UVM, CFKLQ−UVM, ND−UVM and QN−UVM represent resistant mutants induced by sensitive strains GZGY, SCLS, GZXF, CFKLQ, ND and QN through ultraviolet irradiation, respectively. GZGY−FT and CFKLQ−FT represent the resistant mutants obtained by drug domestication of sensitive strain GZGY and CFKLQ, respectively. -
[1] 秦帅, 柯岩, 汪杰, 等. 马铃薯晚疫病防治药剂研究进展[J]. 现代农药, 2020, 19(4): 8-15.QIN S, KE Y, WANG J, et al. Research progress of fungicides for potato late blight[J]. Mod Agrochem, 2020, 19(4): 8-15. [2] 王腾, 闵凡祥, 郭梅, 等. 黑龙江省马铃薯晚疫病菌交配型及对甲霜灵敏感性测定[J]. 植物保护, 2016, 42(1): 180-183. doi: 10.3969/j.issn.0529-1542.2016.01.033WANG T, MIN F X, GUO M, et al. Mating type and metalaxyl sensitivity test of Phytophthora infestans in Heilongjiang Province[J]. Plant Prot, 2016, 42(1): 180-183. doi: 10.3969/j.issn.0529-1542.2016.01.033 [3] 霍超, 曹继芬, 王昌命, 等. 云南省昆明市马铃薯晚疫病菌对甲霜灵抗药性监测[J]. 安徽农业科学, 2018, 46(12): 156-157.HUO C, CAO J F, WANG C M, et al. Metalaxyl sensitivity of Phytophthora infestans on potato in Kunming, Yunnan[J]. J Anhui Agric Sci, 2018, 46(12): 156-157. [4] DEY T, SAVILLE A, MYERS K, et al. Large sub-clonal variation in Phytophthora infestans from recent severe late blight epidemics in India[J]. Sci Rep, 2018, 8(1): 4429-4441. doi: 10.1038/s41598-018-22192-1 [5] 路粉, 赵建江, 刘晓芸, 等. 马铃薯晚疫病菌对甲霜灵的抗性监测及替代药剂防治效果[J]. 中国农业科学, 2018, 51(14): 2700-2710. doi: 10.3864/j.issn.0578-1752.2018.14.007LU F, ZHAO J J, LIU X Y, et al. Monitoring of resistance of Phytophthora infestans on potato to metalaxyl and the control efficacy of alternative fungicides[J]. Scientia Agricultura Sinica, 2018, 51(14): 2700-2710. doi: 10.3864/j.issn.0578-1752.2018.14.007 [6] COHEN Y. Cross-resistance to four systemic fungicides in metalaxyl-resistant strains of Phytophthora infestans and Pseudoperonspora cubensis[J]. Plant Dis, 1984, 68(2): 137. doi: 10.1094/PD-69-137 [7] COHEN Y, Reuveni M. Occurrence of metalaxyl-resistant isolates of Phytophthora infestans in potato fields in Israe1[J]. Phytopathology, 1983, 73(6): 925-927. doi: 10.1094/Phyto-73-925 [8] 杨志辉, 桂秀梅, 朱杰华, 等. 马铃薯晚疫病菌对甲霜灵的抗性及与霜脲氰和霜霉威交互抗药性的研究[J]. 中国农学通报, 2008, 24(5): 335-338.YANG Z H, GUI X M, ZHU J H, et al. Resistance to metalaxyl of Phytophthora infestans and cross-resistance of metalaxyl with cymoxanil and propamocarb[J]. Chin Agric Sci Bull, 2008, 24(5): 335-338. [9] 朱志峰. 马铃薯晚疫病菌对嘧菌酯的敏感性基线建立及其抗性风险初探[D]. 长春: 吉林农业大学, 2007.ZHU Z F. Establishment of the baseline sensitivity of Phytophthora infestans to azoxystrobin and preliminary study on its resistance risk[D]. Changchun: Jilin Agricultural University, 2007. [10] DEKKER J, GEORGOPULOS S G. Fungicide resistance in crop protection[J]. Plant Pathol, 2012, 61(4): 507-507. [11] BRENT K J, HOLLOMON D W. Fungicide resistance: the assessment of risk[M]. FRAC Monograph No.2, 2nd revised edition. Croplife International, Brussels, Belgium, 2007: 1-56. [12] GONZÁLEZ-RODRÍGUEZ R M, CANCHO-GRANDE B, SIMAL-GÁNDARA J. Decay of fungicide residues during vinification of white grapes harvested after the application of some new active substances against downy mildew[J]. Food Chem, 2011, 125(2): 549-560. doi: 10.1016/j.foodchem.2010.09.047 [13] 马铃薯晚疫病菌抗药性检测技术规程: DB13/T 1420—2011[S]. 2011.Technology rules for detecting fungicide resistance in Phytophthora infestans on potato: DB13/T 1420—2011[S]. 2011. [14] 赵卫松. 辣椒疫霉对双炔酰菌胺抗药性风险评估及抗药性生理生化机制研究[D]. 保定: 河北农业大学, 2011.ZHAO W S. Risk evaluation of resistance to mandipropamid of Phytophthora capsici and studies on its physiological and biochemical mechanism[D]. Baoding: Hebei Agricultural University, 2011. [15] VAN TUYL J M. Genetics of fungal resistance to systemic fungicides[M]. Wageningen: Wageningen University and Research ProQuest Dissertations Publishing, 1977. [16] 罗彦涛, 孟润杰, 赵建江, 等. 马铃薯晚疫病菌对氟吡菌胺抗性突变体的获得及其生物学性状[J]. 中国农业科学, 2016, 49(19): 3733-3745. doi: 10.3864/j.issn.0578-1752.2016.19.006LUO Y T, MENG R J, ZHAO J J, et al. Acquisition and biological characteristics of fluopicolide-resistant isolates in Phytophthora infestans[J]. Scientia Agricultura Sinica, 2016, 49(19): 3733-3745. doi: 10.3864/j.issn.0578-1752.2016.19.006 [17] 韩秀英, 马志强, 李红霞, 等. 黄瓜霜霉病菌对嘧菌酯的敏感基线研究[J]. 农药学学报, 2004, 6(2): 76-79.HAN X Y, MA Z Q, LI H X, et al. Study on the sensitive baseline of Pseudoperonospora cubensis to the strobilurin fungicide azoxystrobin[J]. Chin J Pestic Sci, 2004, 6(2): 76-79. [18] 孟润杰, 韩秀英, 吴杰, 等. 河北省黄瓜霜霉病菌对甲霜灵和嘧菌酯的抗性动态及七种药剂的田间防效[J]. 植物保护学报, 2017, 44(5): 849-855.MENG R J, HAN X Y, WU J, et al. Resistance dynamics of Pseudoperonospora cubensis to metalaxyl and azoxystrobin and control efficacy of seven fungicides against cucumber downy mildew in Hebei Province[J]. J Plant Prot, 2017, 44(5): 849-855. [19] 袁善奎, 刘西莉, 刘亮, 等. 马铃薯晚疫病菌对烯酰吗啉的敏感性基线及其室内抗药突变体的研究[J]. 植物病理学报, 2005, 35(6): 545-551. doi: 10.3321/j.issn:0412-0914.2005.06.011YUAN S K, LIU X L, LIU L, et al. Study on baseline sensitivity and laboratory resistant mutants of Phytophthora infestans to dimethomorph[J]. Acta Phytopathologica Sinica, 2005, 35(6): 545-551. doi: 10.3321/j.issn:0412-0914.2005.06.011 [20] STEIN J M, KIRK W W. The generation and quantification of resistance to dimethomorph in Phytophthora infestans[J]. Plant Dis, 2004, 88(9): 930-934. doi: 10.1094/PDIS.2004.88.9.930 [21] COHEN Y, GISI U. Differential activity of carboxylic acid amide fungicides against various developmental stages of Phytophthora infestans[J]. Phytopathology, 2007, 97(10): 1274-1283. doi: 10.1094/PHYTO-97-10-1274 [22] CHABANE K, LEROUX P, BOMPEIX G. Selection and characterization of Phytophthora parasitica mutants with ultraviolet-induced resistance to dimethomorph or metalaxyl[J]. Pestic Sci, 1993, 39(4): 325-329. doi: 10.1002/ps.2780390413 [23] CHABANE K, LEROUX P, MAIA N, et al. Resistance to dimethomorph in laboratory mutants of Phytophthora parasitica[M]//Modern Fungicides and Antifungal Compounds. New York: Athenaeum Press, 1997: 387-391. [24] BLUM M, BOEHLER M, RANDALL E, et al. Mandipropamid targets the cellulose synthase-like PiCesA3 to inhibit cell wall biosynthesis in the oomycete plant pathogen, Phytophthora infestans[J]. Mol Plant Pathol, 2010, 11(2): 227-243. doi: 10.1111/j.1364-3703.2009.00604.x [25] ZHU S S, LIU X L, WANG Y, et al. Resistance of Pseudoperonospora cubensis to flumorph on cucumber in plastic houses[J]. Plant Pathol, 2007, 56(6): 967-975. doi: 10.1111/j.1365-3059.2007.01649.x [26] BLUM M, WALDNER M, OLAYA G, et al. Resistance mechanism to carboxylic acid amide fungicides in the cucurbit downy mildew pathogen Pseudoperonospora cubensis[J]. Pest Manag Sci, 2011, 67(10): 1211-1214. doi: 10.1002/ps.2238 [27] BRENT K J, HOLLOMON D W. Fungicides resistance, the assessment of risk, Monograph No. 2[M]. Brussels: FRAC, Global Grop Protection Federation, 1998: 1-48. -