• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

致病疫霉对缬菌胺敏感基线的建立及抗性风险评估

杨坡 吴杰 路粉 赵建江 毕秋艳 韩秀英 李洋 王文桥

杨坡, 吴杰, 路粉, 赵建江, 毕秋艳, 韩秀英, 李洋, 王文桥. 致病疫霉对缬菌胺敏感基线的建立及抗性风险评估[J]. 农药学学报, 2022, 24(3): 474-482. doi: 10.16801/j.issn.1008-7303.2021.0171
引用本文: 杨坡, 吴杰, 路粉, 赵建江, 毕秋艳, 韩秀英, 李洋, 王文桥. 致病疫霉对缬菌胺敏感基线的建立及抗性风险评估[J]. 农药学学报, 2022, 24(3): 474-482. doi: 10.16801/j.issn.1008-7303.2021.0171
YANG Po, WU Jie, LU Fen, ZHAO Jianjiang, BI Qiuyan, HAN Xiuying, LI Yang, WANG Wenqiao. Establishment of sensitivity baseline of Phytophthora infestans to valifenalate and risk assessment of resistance[J]. Chinese Journal of Pesticide Science, 2022, 24(3): 474-482. doi: 10.16801/j.issn.1008-7303.2021.0171
Citation: YANG Po, WU Jie, LU Fen, ZHAO Jianjiang, BI Qiuyan, HAN Xiuying, LI Yang, WANG Wenqiao. Establishment of sensitivity baseline of Phytophthora infestans to valifenalate and risk assessment of resistance[J]. Chinese Journal of Pesticide Science, 2022, 24(3): 474-482. doi: 10.16801/j.issn.1008-7303.2021.0171

致病疫霉对缬菌胺敏感基线的建立及抗性风险评估

doi: 10.16801/j.issn.1008-7303.2021.0171
基金项目: 国家重点研发计划项目 (2016YFD0201000);河北省重点研发计划项目 (21326510D);国家重点研发计划 (2016YFD0200503-6)
详细信息
    作者简介:

    杨坡,Yangpo0326@163.com

    通讯作者:

    王文桥,wenqiaow@163.com

  • 中图分类号: S481.4

Establishment of sensitivity baseline of Phytophthora infestans to valifenalate and risk assessment of resistance

Funds: National Key R&D Program of China (2016YFD0201000), Key R&D Program in Hebei Province (21326510D), National Key R&D Program of China (2016YFD0200503-6)
  • 摘要: 为建立致病疫霉Phytophthora infestans (Mont.) de Bary对缬菌胺的敏感基线,采用菌丝生长速率法测定了从河北省、黑龙江省、内蒙古自治区、贵州省和四川省未使用过缬菌胺的地区采集分离的105个致病疫霉菌株对缬菌胺的敏感性;为明确致病疫霉对缬菌胺产生抗性突变体的难易程度,进行了紫外诱导和药剂驯化试验;为明确缬菌胺与常用药剂之间的交互抗性,测定了8个抗缬菌胺突变体及其6个亲本敏感菌株对6种常用杀菌剂的敏感性。结果表明:105株致病疫霉对缬菌胺的EC50值范围为0.0594~0.159 mg/L,平均EC50值为(0.102 ± 0.024) mg/L,不同敏感性菌株的频率呈连续单峰曲线分布,未发现敏感性下降的亚群体,因此可将缬菌胺对105株致病疫霉的平均EC50值作为致病疫霉对缬菌胺的敏感基线;通过紫外诱变敏感菌株菌丝体获得了4个抗缬菌胺的突变体,其抗性水平介于 3.1~14.9倍之间,突变频率为0.54%,通过紫外照射敏感菌株孢子囊悬浮液获得了2个抗性水平分别为8.1倍和8.2倍的抗性突变体,突变频率为1.33 × 10−7;通过在含缬菌胺的黑麦蔗糖琼脂培养基上继代培养敏感菌株11代,获得2个抗性水平分别为3.1倍和9.4倍的抗性突变体。缬菌胺与烯酰吗啉和双炔酰菌胺存在交互抗性,与氟吡菌胺、嘧菌酯、甲霜灵和霜脲氰不存在交互抗性。初步推测致病疫霉对缬菌胺具有低到中等抗性风险,建议在生产上将缬菌胺与其他类型杀菌剂交替或混合使用,以延缓致病疫霉对缬菌胺抗性的产生。
  • 图  1  105株致病疫霉菌株对缬菌胺的敏感性分布

    Figure  1.  Senisitivity distribution of 105 isolates of Phytophthora infestans to valifenalate

    图  2  致病疫霉对缬菌胺的敏感基线

    Figure  2.  Sensitivity baseline of Phytophthora infestans to valifenalate

    图  3  致病疫霉对缬菌胺及其他6种杀菌剂交互抗性模式

    Figure  3.  Cross-resistance patterns of P. infestans to valifenalate and the other 6 fungicides

    表  1  供试菌株采集时间及地点

    Table  1.   Collection time and location of the tested strains

    地区   
    Region   
    菌株数
    Number of strains
    采集时间 (年-月) Collection date
    (Year-Month)
    采集地点   
    Collection locality   
    内蒙古自治区
    Inner Mongolia Autonomous Region
    20 2018-08 锡林郭勒盟多伦县;赤峰市喀喇沁旗 Duolun County, Xilinguole League; Kalaqin Banner, Chifeng City
    四川省
    Sichuan Province
    20 2018-08 宜宾市宜宾县;眉山市青神;乐山市犍为县Yibin County, Yibin City; Qingshen County, Meishan City; Qianwei County, Leshan City
    贵州省
    Guizhou Province
    15 2018-08 贵阳市花溪区;贵阳市息烽县Huaxi district, Guiyang City; Xifeng County, Guiyang City
    河北省
    Hebei Province
    25 2018-08 围场满族蒙古族自治县;张家口市沽源县Weichang Manchu and Mongolian Autonomous County; Guyuan County, Zhangjiakou City
    黑龙江省
    Heilongjiang Province
    25 2018-08 齐齐哈尔讷河市;绥化市北林区;大兴安岭加格达奇区Nehe City, Qiqihar; Beilin district, Suihua City; Jiagedaqi district, Greater Khingan Range
    下载: 导出CSV

    表  2  紫外诱变试验亚致死时间的确定

    Table  2.   Determination of sublethal time in ultraviolet mutagenesis test

    紫外照射菌丝体时间Time of UV-irradiating
    mycelia/min
    菌落生长直径Colony diameter/
    mm
    紫外照射孢子囊时间Time of
    UV-irradiating sporangia/s
    菌丝生长疏密程度Degree of colony
    density
    0 31.6 ± 0.54 0 +++++
    10 27.6 ± 0.54 30 ++++
    15 21.6 ± 0.5 60 +++
    20 17.9 ± 0.54 90 ++
    25 11.7 ± 0.6 120 +
    30 6.3 ± 0.24 150
    35 5 ± 0 180
    注:“−” 表示没有菌丝生长;“+” 表示有极稀疏菌丝生长;“++” 表示有较稀疏的菌丝生长; “+++” 表示有中等密集的菌丝生长;“++++” 表示有较密集的菌丝生长;“+++++” 表示有很密集的菌丝生长.Note:“−” indicates no hypha growth. “+” indicates very thin hypha growth. “++” indicates thinner hypha growth. “+++” indicates mediumly dense hypha growth. “+++++” indicates the denser hypha growth. “+++++” indicates very dense hypha growth.
    下载: 导出CSV

    表  3  致病疫霉亲本菌株GZGY经药剂驯化获得对缬菌胺抗性过程

    Table  3.   The acquisition of resistance to valifenalate in Phytophthora infestans parent strain GZGY

    继代培养代数No. of
    subculture
    最低抑制浓度MIC/
    (mg/L)
    亚致死浓度Sublethal concentration/
    (mg/L)
    亚致死浓度下抑制率Inhibition rate
    under sublethal concentration/%
    有效抑制中浓度
    EC50/(mg/L)
    G0 0.5 0.4 93.1 0.103
    G1 0.5 0.4 91.9 0.113
    G2 0.5 0.4 90.8 0.125
    G3 1 0.8 91.3 0.143
    G4 1 0.8 93.8 0.228
    G5 2 1.5 90.7 0.319
    G6 2 1.5 91.8 0.419
    G7 3 2 93.8 0.467
    G8 4 3 92.5 0.569
    G9 4 3 92.4 0.658
    G10 5 4 91.2 0.768
    G11 6 5 92.3 0.973
    下载: 导出CSV

    表  4  致病疫霉亲本菌株CFKLQ经药剂驯化获得对缬菌胺抗性过程

    Table  4.   The acquisition of resistance to valifenalate in P. infestans parent strain CFKLQ

    继代培养代数No. of
    subculture
    最低抑制浓度
    MIC/(mg/L)
    亚致死浓度Sublethal concentration/
    (mg/L)
    亚致死浓度下抑制率Inhibition rate
    under sublethal concentration/%
    有效抑制中浓度
    EC50/(mg/L)
    G0 0.4 0.3 91.7 0.109
    G1 0.4 0.3 90.7 0.118
    G2 0.4 0.3 90.6 0.124
    G3 0.5 0.4 91.5 0.160
    G4 0.5 0.4 92.9 0.212
    G5 0.6 0.5 92.8 0.231
    G6 0.6 0.5 92.8 0.245
    G7 0.7 0.6 93.8 0.259
    G8 0.8 0.7 92.3 0.272
    G9 0.9 0.8 91.8 0.297
    G10 1.2 1 91.5 0.310
    G11 1.2 1 90.7 0.322
    下载: 导出CSV

    表  5  致病疫霉对缬菌胺抗性突变体的抗性水平

    Table  5.   Resistance factor to valifenalate of the valifenalate-resistant mutants of P. infestans

    菌株
    Strain
    毒力回归方程
    Toxic regression equation (y=)
    相关系数
    Correlation coefficent, r
    有效抑制中浓度
    EC50/(mg/L)
    95% 置信区间
    Confidence interval of 95%/(mg/L)
    抗性水平
    Resistance factor (RF)
    GZGY* 1.928x + 6.966 0.975 0.096 0.0762~0.120
    GZGY−UVS 1.978x + 5.208 0.977 0.785 0.683~0.904 8.2
    GZGY−FT 1.833x + 5.088 0.961 0.896 0.589~1.361 9.4
    SCLS* 1.826x + 6.926 0.982 0.088 0.0729~0.107
    SCLS−UVS 1.809x + 5.262 0.982 0.717 0.691~0.747 8.1
    GZXF* 2.335x + 7.274 0.988 0.106 0.0906~0.124
    GZXF−UVM 2.458x + 6.167 0.991 0.335 0.280~0.402 3.2
    CFKLQ* 2.317x + 7.266 0.990 0.105 0.0912~0.121
    CFKLQ−FT 2.056x + 6.012 0.976 0.322 0.239~0.433 3.1
    CFKLQ−UVM 1.612x + 4.689 0.956 1.560 0.932~2.612 14.8
    ND* 1.944x + 6.669 0.986 0.139 0.114~0.168
    ND−UVM 1.638x + 4.652 0.974 1.632 1.0959~2.431 11.8
    QN* 2.731x + 7.680 0.994 0.104 0.0947~0.115
    QN−UVM 1.498x + 4.711 0.959 1.559 0.948~2.562 14.9
    注: * 代表亲本菌株;ZGY−UVS、SCLS−UVS、GZXF−UVM、CFKLQ−UVM、ND−UVM和QN−UVM分别代表敏感菌株GZGY、SCLS、GZXF、CFKLQ、 ND和QN通过紫外照射诱导获得的抗性突变体;GZGY−FT和CFKLQ−FT分别代表敏感菌株GZGY和CFKLQ通过药剂驯化获得的抗性突变体。Note: *Indicates parental isolate. GZGY−UVS, SCLS−UVS, GZXF−UVM, CFKLQ−UVM, ND−UVM and QN−UVM represent resistant mutants induced by sensitive strains GZGY, SCLS, GZXF, CFKLQ, ND and QN through ultraviolet irradiation, respectively. GZGY−FT and CFKLQ−FT represent the resistant mutants obtained by drug domestication of sensitive strain GZGY and CFKLQ, respectively.
    下载: 导出CSV
  • [1] 秦帅, 柯岩, 汪杰, 等. 马铃薯晚疫病防治药剂研究进展[J]. 现代农药, 2020, 19(4): 8-15.

    QIN S, KE Y, WANG J, et al. Research progress of fungicides for potato late blight[J]. Mod Agrochem, 2020, 19(4): 8-15.
    [2] 王腾, 闵凡祥, 郭梅, 等. 黑龙江省马铃薯晚疫病菌交配型及对甲霜灵敏感性测定[J]. 植物保护, 2016, 42(1): 180-183. doi: 10.3969/j.issn.0529-1542.2016.01.033

    WANG T, MIN F X, GUO M, et al. Mating type and metalaxyl sensitivity test of Phytophthora infestans in Heilongjiang Province[J]. Plant Prot, 2016, 42(1): 180-183. doi: 10.3969/j.issn.0529-1542.2016.01.033
    [3] 霍超, 曹继芬, 王昌命, 等. 云南省昆明市马铃薯晚疫病菌对甲霜灵抗药性监测[J]. 安徽农业科学, 2018, 46(12): 156-157.

    HUO C, CAO J F, WANG C M, et al. Metalaxyl sensitivity of Phytophthora infestans on potato in Kunming, Yunnan[J]. J Anhui Agric Sci, 2018, 46(12): 156-157.
    [4] DEY T, SAVILLE A, MYERS K, et al. Large sub-clonal variation in Phytophthora infestans from recent severe late blight epidemics in India[J]. Sci Rep, 2018, 8(1): 4429-4441. doi: 10.1038/s41598-018-22192-1
    [5] 路粉, 赵建江, 刘晓芸, 等. 马铃薯晚疫病菌对甲霜灵的抗性监测及替代药剂防治效果[J]. 中国农业科学, 2018, 51(14): 2700-2710. doi: 10.3864/j.issn.0578-1752.2018.14.007

    LU F, ZHAO J J, LIU X Y, et al. Monitoring of resistance of Phytophthora infestans on potato to metalaxyl and the control efficacy of alternative fungicides[J]. Scientia Agricultura Sinica, 2018, 51(14): 2700-2710. doi: 10.3864/j.issn.0578-1752.2018.14.007
    [6] COHEN Y. Cross-resistance to four systemic fungicides in metalaxyl-resistant strains of Phytophthora infestans and Pseudoperonspora cubensis[J]. Plant Dis, 1984, 68(2): 137. doi: 10.1094/PD-69-137
    [7] COHEN Y, Reuveni M. Occurrence of metalaxyl-resistant isolates of Phytophthora infestans in potato fields in Israe1[J]. Phytopathology, 1983, 73(6): 925-927. doi: 10.1094/Phyto-73-925
    [8] 杨志辉, 桂秀梅, 朱杰华, 等. 马铃薯晚疫病菌对甲霜灵的抗性及与霜脲氰和霜霉威交互抗药性的研究[J]. 中国农学通报, 2008, 24(5): 335-338.

    YANG Z H, GUI X M, ZHU J H, et al. Resistance to metalaxyl of Phytophthora infestans and cross-resistance of metalaxyl with cymoxanil and propamocarb[J]. Chin Agric Sci Bull, 2008, 24(5): 335-338.
    [9] 朱志峰. 马铃薯晚疫病菌对嘧菌酯的敏感性基线建立及其抗性风险初探[D]. 长春: 吉林农业大学, 2007.

    ZHU Z F. Establishment of the baseline sensitivity of Phytophthora infestans to azoxystrobin and preliminary study on its resistance risk[D]. Changchun: Jilin Agricultural University, 2007.
    [10] DEKKER J, GEORGOPULOS S G. Fungicide resistance in crop protection[J]. Plant Pathol, 2012, 61(4): 507-507.
    [11] BRENT K J, HOLLOMON D W. Fungicide resistance: the assessment of risk[M]. FRAC Monograph No.2, 2nd revised edition. Croplife International, Brussels, Belgium, 2007: 1-56.
    [12] GONZÁLEZ-RODRÍGUEZ R M, CANCHO-GRANDE B, SIMAL-GÁNDARA J. Decay of fungicide residues during vinification of white grapes harvested after the application of some new active substances against downy mildew[J]. Food Chem, 2011, 125(2): 549-560. doi: 10.1016/j.foodchem.2010.09.047
    [13] 马铃薯晚疫病菌抗药性检测技术规程: DB13/T 1420—2011[S]. 2011.

    Technology rules for detecting fungicide resistance in Phytophthora infestans on potato: DB13/T 1420—2011[S]. 2011.
    [14] 赵卫松. 辣椒疫霉对双炔酰菌胺抗药性风险评估及抗药性生理生化机制研究[D]. 保定: 河北农业大学, 2011.

    ZHAO W S. Risk evaluation of resistance to mandipropamid of Phytophthora capsici and studies on its physiological and biochemical mechanism[D]. Baoding: Hebei Agricultural University, 2011.
    [15] VAN TUYL J M. Genetics of fungal resistance to systemic fungicides[M]. Wageningen: Wageningen University and Research ProQuest Dissertations Publishing, 1977.
    [16] 罗彦涛, 孟润杰, 赵建江, 等. 马铃薯晚疫病菌对氟吡菌胺抗性突变体的获得及其生物学性状[J]. 中国农业科学, 2016, 49(19): 3733-3745. doi: 10.3864/j.issn.0578-1752.2016.19.006

    LUO Y T, MENG R J, ZHAO J J, et al. Acquisition and biological characteristics of fluopicolide-resistant isolates in Phytophthora infestans[J]. Scientia Agricultura Sinica, 2016, 49(19): 3733-3745. doi: 10.3864/j.issn.0578-1752.2016.19.006
    [17] 韩秀英, 马志强, 李红霞, 等. 黄瓜霜霉病菌对嘧菌酯的敏感基线研究[J]. 农药学学报, 2004, 6(2): 76-79.

    HAN X Y, MA Z Q, LI H X, et al. Study on the sensitive baseline of Pseudoperonospora cubensis to the strobilurin fungicide azoxystrobin[J]. Chin J Pestic Sci, 2004, 6(2): 76-79.
    [18] 孟润杰, 韩秀英, 吴杰, 等. 河北省黄瓜霜霉病菌对甲霜灵和嘧菌酯的抗性动态及七种药剂的田间防效[J]. 植物保护学报, 2017, 44(5): 849-855.

    MENG R J, HAN X Y, WU J, et al. Resistance dynamics of Pseudoperonospora cubensis to metalaxyl and azoxystrobin and control efficacy of seven fungicides against cucumber downy mildew in Hebei Province[J]. J Plant Prot, 2017, 44(5): 849-855.
    [19] 袁善奎, 刘西莉, 刘亮, 等. 马铃薯晚疫病菌对烯酰吗啉的敏感性基线及其室内抗药突变体的研究[J]. 植物病理学报, 2005, 35(6): 545-551. doi: 10.3321/j.issn:0412-0914.2005.06.011

    YUAN S K, LIU X L, LIU L, et al. Study on baseline sensitivity and laboratory resistant mutants of Phytophthora infestans to dimethomorph[J]. Acta Phytopathologica Sinica, 2005, 35(6): 545-551. doi: 10.3321/j.issn:0412-0914.2005.06.011
    [20] STEIN J M, KIRK W W. The generation and quantification of resistance to dimethomorph in Phytophthora infestans[J]. Plant Dis, 2004, 88(9): 930-934. doi: 10.1094/PDIS.2004.88.9.930
    [21] COHEN Y, GISI U. Differential activity of carboxylic acid amide fungicides against various developmental stages of Phytophthora infestans[J]. Phytopathology, 2007, 97(10): 1274-1283. doi: 10.1094/PHYTO-97-10-1274
    [22] CHABANE K, LEROUX P, BOMPEIX G. Selection and characterization of Phytophthora parasitica mutants with ultraviolet-induced resistance to dimethomorph or metalaxyl[J]. Pestic Sci, 1993, 39(4): 325-329. doi: 10.1002/ps.2780390413
    [23] CHABANE K, LEROUX P, MAIA N, et al. Resistance to dimethomorph in laboratory mutants of Phytophthora parasitica[M]//Modern Fungicides and Antifungal Compounds. New York: Athenaeum Press, 1997: 387-391.
    [24] BLUM M, BOEHLER M, RANDALL E, et al. Mandipropamid targets the cellulose synthase-like PiCesA3 to inhibit cell wall biosynthesis in the oomycete plant pathogen, Phytophthora infestans[J]. Mol Plant Pathol, 2010, 11(2): 227-243. doi: 10.1111/j.1364-3703.2009.00604.x
    [25] ZHU S S, LIU X L, WANG Y, et al. Resistance of Pseudoperonospora cubensis to flumorph on cucumber in plastic houses[J]. Plant Pathol, 2007, 56(6): 967-975. doi: 10.1111/j.1365-3059.2007.01649.x
    [26] BLUM M, WALDNER M, OLAYA G, et al. Resistance mechanism to carboxylic acid amide fungicides in the cucurbit downy mildew pathogen Pseudoperonospora cubensis[J]. Pest Manag Sci, 2011, 67(10): 1211-1214. doi: 10.1002/ps.2238
    [27] BRENT K J, HOLLOMON D W. Fungicides resistance, the assessment of risk, Monograph No. 2[M]. Brussels: FRAC, Global Grop Protection Federation, 1998: 1-48.
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  175
  • HTML全文浏览量:  52
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-10
  • 录用日期:  2021-10-24
  • 网络出版日期:  2021-11-11
  • 刊出日期:  2022-06-10

目录

    /

    返回文章
    返回