Construction of pH-responsive chlorpyrifos hydrogels system and its controlled-release property
-
摘要: 传统农药易受到环境因子的影响而过早降解,导致利用率低下,利用响应型控释技术对传统农药剂型进行改善是提高农药利用率的有效措施。本研究使用多巴胺改性凹凸棒负载毒死蜱 (CPF),将海藻酸盐作为包覆材料,利用外源挤出法与Ca2+ 交联,制备了能够对碱性条件作出特定响应的多巴胺改性凹凸棒/毒死蜱/海藻酸钙复合水凝胶 (PRCH)。通过扫描电镜 (SEM)、ζ-电位和比表面积测试 (BET) 对PRCH的形貌和结构进行表征,并研究PRCH在不同pH环境介质中的缓释性能、溶胀性能以及在紫外光和不同温度下的稳定性。结果表明:PRCH对毒死蜱的负载率高达85%,并能够在碱性条件下吸水溶胀,导致海藻酸钙孔道打开甚至结构坍塌,从而释放出毒死蜱。利用Korsmeyer-Peppas模型方程拟合曲线阐释PRCH的缓释机理为:在pH = 5.5的缓冲液中,毒死蜱的释药速率由药物的扩散和水凝胶溶胀共同决定;pH = 7.0时农药传输过程由水凝胶裂解的速率主导;而pH = 8.5时农药自身的扩散在毒死蜱的释放过程中起主要作用,但水凝胶的裂解加速了毒死蜱的扩散。PRCH比毒死蜱标准品拥有更强的紫外稳定性和温度稳定性。本研究表明,PRCH具备优异的载药性能、pH特定响应和绿色环保等优势,在提高传统农药施用稳定性和防治效果等方面具有良好的应用前景。Abstract: Traditional pesticides are susceptible to environmental factors and their early degradation leads to a low utilization rate. It is an effective measure to improve the utilization rate of pesticides by using responsive controlled release technology. In this study, dopamine-modified attapulgite/chlorpyrifos/calcium alginate composite hydrogels (PRCH) with a specific response to alkaline conditions were prepared using dopamine-modified attapulgite loaded with chlorpyrifos (CPF) and alginate was used as coating material by extrinsic extrusion method and crosslinking with Ca2+. The morphology and structure of PRCH were characterized by scanning electron microscope (SEM), Zeta-potential, and BET specific surface area tests. The sustained-release and swelling properties of PRCH in different pH environments were studied, and the stability of PRCH under UV light and different temperatures were explored. The results showed that the loading rate of PRCH with chlorpyrifos was as high as 85%. PRCH could absorb water and swell under alkaline conditions, resulting in the opening of calcium alginate channels and even structural collapse to release chlorpyrifos. The release mechanism of PRCH was explained by fitting the curve with Korsmeyer-Peppas model equation: The release rate of PRCH in buffer solution with pH 5.5 was determined by both drug diffusion and hydrogel swelling. When the buffer pH is 7.0, the pesticide transport process is dominated by the cleavage rate of hydrogels. At pH 8.5, the diffusion of pesticide itself played a major role in the release of chlorpyrifos, but the fragmentation of the hydrogels accelerated the spread of chlorpyrifos. In addition, we found that PRCH has stronger UV stability and temperature stability than industrial grade chlorpyrifos. Collectively, PRCH has the advantages such as excellent drug loading rate, pH-specific response characteristics and being environmentally friendly. Therefore, the system has great application prospects in improving the stability and efficacy of traditional pesticides.
-
Key words:
- pH-responsive controlled release system /
- attapulgite /
- chlorpyrifos /
- alginate /
- hydrogels /
- slow release property
-
图 5 (a) 凹凸棒 (ATP) 、 (b) 酸化凹凸棒 (HCl-ATP) 、 (c) 多巴胺修饰的凹凸棒 (PA) 、 (d) 负载毒死蜱的多巴胺修饰凹凸棒 (PA-CPF)、(e-f) PRCH和(g-i) PRCH截面的扫描电镜图
Figure 5. SEM of (a) attapulgite (ATP), (b) acidified attapulgite (HCl-ATP), (c) dopamine-modified attapulgite (PA), (d) dopamine-modified attapulgite located on chlorpyrifos (PA-CPF), (e-f) PRCH, (g-i) PRCH cross sections
表 1 不同黏土矿物装载毒死蜱的能力
Table 1. Chlorpyrifos loading capacity of different clay minerals
矿物
Mineral负载率
Loading rate/%凹凸棒 Attapulgite 67.6 海泡石 Sepiolite 22.9 伊利石 Illite 19.8 蒙脱石 Montmorillonite 16.6 表 2 PRCH在pH值为5.5、7.0和8.5的3种介质中毒死蜱的累积释放曲线拟合参数
Table 2. Fitting parameters of cumulative release curves of chlorpyrifos by PRCH at pH 5.5, 7.0 and 8.5
pH 释药模型特征常数
K/h-n特性指数
n决定系数
R2扩散机制
Diffusion mechanism5.5 0.6156 0.6286 0.7179 Non-Fickian 7.0 0.3760 1.168 0.1281 Ⅱ-Fickian 8.5 21.35 0.3386 0.9293 Ⅰ-Fickian -
[1] SINGH A, DHIMAN N, KAR A K, et al. Advances in controlled release pesticide formulations: prospects to safer integrated pest management and sustainable agriculture[J]. J Hazard Mater, 2020, 385: 121525. doi: 10.1016/j.jhazmat.2019.121525 [2] 蔡冬清, 吴正岩, 吴丽芳, 等. 化肥与农药控失技术研发及产业化[J]. 科技促进发展, 2019, 15(4): 351-356.CAI D Q, WU Z Y, WU L F, et al. Loss-control technologies of fertilizer and pesticide and the industrilization[J]. Sci Technol Dev, 2019, 15(4): 351-356. [3] CHI Y, ZHANG G L, XIANG Y B, et al. Fabrication of a temperature-controlled-release herbicide using a nanocomposite[J]. ACS Sustain Chem Eng, 2017, 5(6): 4969-4975. doi: 10.1021/acssuschemeng.7b00348 [4] 杨君, 张正, 崔忠凯, 等. 新型pH响应性噻虫嗪纳米脂质体的制备及其杀虫活性[J]. 农药学学报, 2020, 22(6): 1054-1060.YANG J, ZHANG Z, CUI Z K, et al. Fabrication of pH-responsive non-phospholipid liposomal nanocarriers for insecticidal activity of thiamethoxam[J]. Chin J Pestic Sci, 2020, 22(6): 1054-1060. [5] LIANG Y, GAO Y H, WANG W C, et al. Fabrication of smart stimuli-responsive mesoporous organosilica nano-vehicles for targeted pesticide delivery[J]. J Hazard Mater, 2020, 389: 122075. doi: 10.1016/j.jhazmat.2020.122075 [6] DENG K L, GOU Y B, ZUO J, et al. A pH/temperature-sensitive semi-IPN bead for drug release carrier[J]. Adv Mater Res. 2010, 148-149: 1449-1452. [7] TREENATE P, MONVISADE P. In vitro drug release profiles of pH-sensitive hydroxyethylacryl chitosan/sodium alginate hydrogels using paracetamol as a soluble model drug[J]. Int J Biol Macromol, 2017, 99: 71-78. doi: 10.1016/j.ijbiomac.2017.02.061 [8] ABD EL-GHAFFAR M A, HASHEM M S, EL-AWADY M K, et al. pH-sensitive sodium alginate hydrogels for riboflavin controlled release[J]. Carbohyd Polym, 2012, 89(2): 667-675. doi: 10.1016/j.carbpol.2012.03.074 [9] HE F R, ZHOU Q F, WANG L Z, et al. Fabrication of a sustained release delivery system for pesticides using interpenetrating polyacrylamide/alginate/montmorillonite nanocomposite hydrogels[J]. Appl Clay Sci, 2019, 183: 105347. doi: 10.1016/j.clay.2019.105347 [10] FERNáNDEZ-PéREZ M, VILLAFRANCA-SáNCHEZ M, FLORES-CéSPEDES F, et al. Use of bentonite and activated carbon in controlled release formulations of carbofuran[J]. 2005, J Agric Food Chem, 53(17): 6697-6703. [11] SREEKANTH REDDY O, SUBHA M C S, JITHENDRA T, et al. Curcumin encapsulated dual cross linked sodium alginate/montmorillonite polymeric composite beads for controlled drug delivery[J]. J Pharm Anal, 2021, 11(2): 191-199. doi: 10.1016/j.jpha.2020.07.002 [12] 颜慧琼, 陈秀琼, 朱祺东, 等. 高岭土的球磨疏水改性及其在海藻酸盐凝胶微球中的应用[J]. 精细化工 2016, 33(4): 383-389.YAN H Q, CHEN X Q, ZHU Q D, et al. Hydrophobic modification of Kaolin via ball-milling method and its application in alginate composite microgel beads[J]. Fine Chem, 2016, 33(4): 383-389. [13] HE Y H , WU Z S, TU L, et al. Encapsulation and characterization of slow-release microbial fertilizer from the composites of bentonite and alginate[J]. Appl Clay Sci, 2015, 109-110: 68-75. doi: 10.1016/j.clay.2015.02.001 [14] 陈铧耀, 周新华, 周红军, 等. 毒死蜱/壳聚糖改性凹凸棒土/海藻酸钠微球的制备与缓释性能[J]. 化工进展, 2017, 36(3): 1033-1040.CHEN H Y, ZHOU X H, ZHOU H J, et al. Preparation and slow-release performance of chlorpyrifos/chitosan modified attapulgite/sodium alginate microspheres[J]. Chem Ind Eng Prog, 2017, 36(3): 1033-1040. [15] ZHOU C H, KEELING J. Fundamental and applied research on clay minerals: from climate and environment to nanotechnology[J]. Appl Clay Sci, 2013, 74: 3-9. doi: 10.1016/j.clay.2013.02.013 [16] FU H Y, TAN P, WANG R J, et al. Advances in organophosphorus pesticides pollution: current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies[J]. J Hazard Mater, 2022, 424: 127494. doi: 10.1016/j.jhazmat.2021.127494 [17] 吴祥为, 花日茂, 唐俊. 表面活性剂对毒死蜱在水溶液中的光解影响[J]. 农业环境科学学报, 2009, 28(8): 1705-1711. doi: 10.3321/j.issn:1672-2043.2009.08.027WU X W, HUA R M, TANG J. Effect of surfactants on photolysis of chlorpyrifos in aqueous solution[J]. J Agro-Environ Sci, 2009, 28(8): 1705-1711. doi: 10.3321/j.issn:1672-2043.2009.08.027 [18] OMIDIAN H, HASHEMI S A, SAMMES P G, et al. A model for the swelling of superabsorbent polymers[J]. Polymer, 1998, 39(26): 6697-6704. doi: 10.1016/S0032-3861(98)00095-0 [19] YIN Y, YANG M, XI J, et al. A sodium alginate-based nano-pesticide delivery system for enhanced in vitro photostability and insecticidal efficacy of phloxine B[J]. Carbohyd Polym, 2020, 247: 116677. doi: 10.1016/j.carbpol.2020.116677 [20] RITGER P L, PEPPAS N A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs[J]. J Control Release, 1987, 5(1): 23-36. doi: 10.1016/0168-3659(87)90034-4 [21] HAO L, LIN G, LIAN J, et al. Carboxymethyl cellulose capsulated zein as pesticide nano-delivery system for improving adhesion and anti-UV properties[J]. Carbohyd Polym, 2020, 231: 115725. doi: 10.1016/j.carbpol.2019.115725 [22] 郭娜, 王金生, 李剑, 等. 改性凹凸棒土在水处理中的应用现状[J]. 北京师范大学学报(自然科学版), 2014, 50(6): 634-637.GUO N, WANG J S, LI J, et al. Application of modified attapulgite in water treatment[J]. J Beijing Norm Univ(Nat Sci), 2014, 50(6): 634-637. [23] LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426-430. doi: 10.1126/science.1147241 [24] SING K S J P, CHEMISTRY A. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Appl Chem, 1985, 57(4): 603-619. doi: 10.1351/pac198557040603 [25] 陈天虎, 徐惠芳, 彭书传, 等. 凹凸棒石与酸反应纳米尺度研究: 反应机理和表面积变化[J]. 高校地质学报, 2004, 10(1): 98-105. doi: 10.3969/j.issn.1006-7493.2004.01.009CHEN T H, XU H F, PENG S C, et al. Nanometer scale study on reaction of palygorskite with acid: reaction mechanism and change of specific surface area[J]. Geol J China Univ, 2004, 10(1): 98-105. doi: 10.3969/j.issn.1006-7493.2004.01.009 [26] XIANG Y B, ZHANG G L, CHEN C W, et al. Fabrication of a pH-responsively controlled-release pesticide using an attapulgite-based hydrogel[J]. ACS Sustain Chem Eng, 2017, 6(1): 1192-201. [27] 包朝玲, 陈秀琼, 雷梦圆, 等. 基于湿法球磨改性蒙脱土构建可负载疏水药物的海藻酸盐/有机蒙脱土复合凝胶微球及其释药性[J]. 材料导报, 2020, 34(10): 10171-10176. doi: 10.11896/cldb.19040208BAO C L, CHEN X Q, LEI M Y, et al. Construction of alginate/organic montmorillonite composite hydrogel beads capable of loading hydrophobic drugs based on wet-ball milling method modified montmorillonite and their release properties[J]. Mater Rep, 2020, 34(10): 10171-10176. doi: 10.11896/cldb.19040208 [28] RASHIDIPOUR M, MALEKI A, KORDI S, et al. Pectin/chitosan/tripolyphosphate nanoparticles: efficient carriers for reducing soil sorption, cytotoxicity, and mutagenicity of paraquat and enhancing its herbicide activity[J]. J Agric Food Chem, 2019, 67(20): 5736-5745. doi: 10.1021/acs.jafc.9b01106 -