Discovery of fungicide flubeneteram
-
摘要: 琥珀酸脱氢酶 (succinate dehydrogenase, SDH) 是重要的杀菌剂靶标之一,而很多植物病原菌对靶向SDH的杀菌剂已经产生了较为严重的抗药性,因此新型靶向SDH的杀菌剂设计显得尤为重要。基于药效团连接碎片的虚拟筛选 (PFVS) 是一种独立于生物物理技术的高通量药物发现方法,采用PFVS方法成功获得了靶向SDH的新型杀菌剂候选化合物—氟苯醚酰胺。本文主要从PFVS原理、先导化合物的发现、取代基的修饰以及杀菌活性研究等方面对氟苯醚酰胺的创制进行系统分析。氟苯醚酰胺创制的案例分析可为农药研究工作者提供新思路和新方法。
-
关键词:
- 药效团连接碎片的虚拟筛选 /
- 琥珀酸脱氢酶 /
- 氟苯醚酰胺 /
- 杀菌剂
Abstract: Succinate dehydrogenase (SDH) is one of the important fungicide targets. However, many plant pathogens showed medium and even high resistance to commercial fungicides targeting upon SDH. So, it is very urgent to design new novel inhibitor for SDH. Pharmacophore-linked fragment virtual screening (PFVS) is a high-throughput drug discovery approach independent of biophysical screening techniques and flubeneteram, a novel fungicide candidate targeting SDH, was successfully obtained by PFVS. Here, the development process of the fungicide flubeneteram was analyzed in detail, including the principle of PFVS, the discovery of lead compounds, the modification of substituents and the study on fungicidal activity. The discovery process of flubeneteram would provide novel ideas and methods for pesticide researchers. -
图 3 结合模式显示图
注:(A) hit4 (黄色棍状显示)与猪心SDH的结合方式; (B) 氟苯醚酰胺 (黄色棍状显示)与猪心SDH的结合方式; (C) 氟酰胺衍生物 (黄色棍状显示) 与猪心SDH结合方式 (PDB ID:3ABV); (D) 氟苯醚酰胺 (橙色棍状显示)与水稻纹枯病菌SDH的结合方式; (E) 氟苯醚酰胺与猪心SDH (玫红色和黄色棍状显示) 和水稻纹枯病菌SDH (灰色和绿色棍状显示) 结合方式显示叠合图; (F) 噻呋酰胺与猪心SDH (玫红色和黄色棍状显示) 和水稻纹枯病菌SDH (灰色和绿色棍状显示) 结合方式显示叠合图;为了便于展示,C_M39/W的含义为猪心中SDH为C_M39,而水稻纹枯病中SDH为C_W39;以此类推,C_W35/P表示的是猪心中SDH为C_W35,而水稻纹枯病中SDH为C_P35;C_I30/F表示的是猪心中SDH为C_I30,而水稻纹枯病中SDH为C_F30 [26]。
Figure 3. The binding modes
Note: (A) hit 4 (yellow stick) with porcine SDH. (B) flubeneteram (yellow stick) with porcine SDH. (C) flutolanil derivatives (yellow stick) with porcine SDH in crystal structure 3ABV. (D) flubeneteram (orange stick) with Rhizoctonia solani (R. solani) SDH. (E) Overlay of flubeneteram binding with porcine SDH (represented by magenta and yellow stick) and R. solani SDH (represented by gray and green stick). (F) Overlay of thifluzamide binding with porcine SDH (represented by magenta and yellow) and R. solani SDH (represented by gray and green sticks). C_M39/W, C_W35/P, and C_I30/F respectively indicate C_M39, C_W35, and C_I30 in porcine SDH and C_W39, C_P35, and C_F30 in R. solani SDH. For clarity, just some key residues are shown[26]
表 1 商品化SDHI与SDH的结合自由能 (kcal/mol)c[24]
Table 1. The binding free energies of ten SDHI with the Q-site of SDH (kcal/mol)c[24]
化合物
Compound
△Eele
△Evdw
△Gnp
△Gpol
△H
−T△S
△Gcal
△Gexpa
Kib/(μmol/L)噻呋酰胺 thifluzamide −10.62 −43.99 −4.76 31.02 −28.35 11.21 −17.14 −9.10 0.20 吡噻菌胺 penthiopyrad −13.84 −41.91 −5.10 34.28 −26.57 13.54 −13.03 −7.35 3.90 萎锈灵 carboxin −14.42 −35.65 −4.15 29.48 −24.74 12.16 −12.58 −7.25 4.59 啶酰菌胺 boscalid −18.50 −39.68 −4.66 39.76 −23.08 11.02 −12.06 −6.84 9.20 麦锈灵 benodanil −10.38 −34.43 −4.20 27.87 −21.14 10.13 −11.01 −6.63 13.17 氟酰胺 flutolanil −9.75 −38.41 −4.68 32.28 −20.57 9.76 −10.81 −6.17 28.88 呋吡菌胺 furamepyr −13.94 −37.16 −4.58 34.69 −20.99 10.43 −10.56 −6.16 29.27 灭锈胺 mepronil −11.92 −36.64 −4.57 32.97 −20.16 9.59 −10.57 −6.11 31.81 氧化萎锈灵 oxycarboxin −20.09 −38.22 −4.26 41.65 −20.93 10.48 −10.45 −5.56 81.02 甲呋酰胺 fenfuram −15.03 −32.00 −3.90 29.13 −21.79 11.64 −10.15 −5.39 108.40 注:a△Gexp = -RTlnKi;b使用琥珀酸-DCIP体系测定。c 1 kcal/mol = 4.184 kJ/mol。
Note:a△Gexp = -RTlnKi; bDetermined with the succinate-DCIP system. c1 kcal/mol = 4.184 kJ/mol.表 2 活体杀菌活性及对猪心SDH的IC50值[26]
Table 2. Fungicidal activities in vivo and IC50 value against porcine SDH[26]
化合物
CompoundR1 R2 质量浓度
Concentration/(mg/L)防治效果
Control efficacy/%IC50值 (猪心SDH)
IC50 value (porcine SDH)/(μmol/L)水稻纹枯病
Rice sheath blight黄瓜白粉病
Cucumber powdery mildewHit4 CF3 H 200 76 100 19.79 2 CF3 2-Cl 200 82 56 1.98 3 CF3 3-Cl 200 69 22 36.9 4 CF3 4-F 200 57 15 >100 5 CF3 4-Cl 200 66 44 4.90 6 CF3 4-CN 200 30 0 >100 7 CF3 2,4-Cl2 200 69 0 2.70 8 CF3 2-Cl-4-CF3 200 100 100 0.28 9 CHF2 2-Cl 200 100 100 1.13 10 CHF2 2,4-Cl2 200 100 80 0.40 11 CHF2 2-Cl-4-CF3 200 100 100 0.11 吡噻菌胺 penthiopyrad — — NT NT NT 1.29 噻呋酰胺 thifluzamide — — 100 100 100 NT 注:NT表示未测定。Note: NT indicates untested. 表 3 化合物9~11在低浓度下活体杀菌活性[26]
Table 3. Fungicidal activities of compounds 9-11 in vivo at lower concentration[26]
化合物
Compound质量浓度
Concentration/
(mg/L)防治效果
Control efficacy/%化合物
Compound质量浓度
Concentration/
(mg/L)防治效果
Control efficacy/%水稻纹枯病
Rice sheath
blight黄瓜白粉病
Cucumber powdery
mildew水稻纹枯病
Rice sheath
blight黄瓜白粉病
Cucumber powdery
mildew9 100 100 100 11 100 100 100 50 100 83 50 100 100 25 80 41 25 99 94 12.5 72 7 12.5 95 67 6.25 75 0 6.25 70 0 10 100 100 — 噻呋酰胺
thifluzamide100 100 100 50 98 — 50 100 63 25 95 — 25 82 22 12.5 82 — 12.5 61 0 6.25 69 — 6.25 54 0 注:— 表示未测定。Note: — Indicates untested. 药剂处理
Treatment有效成分用量
Amount of active ingredient/(g/hm2)第 2 次施药后 7 d
7 days after the second spraying第 2 次施药后 21 d
21 days after the second spraying病情指数
Disease index防治效果
Control efficacy/%病情指数
Disease index防治效果
Control
efficacy/%浙江宁波
Ningbo, Zhejiang11
(5%, EC)112.5 1.59 77.2 0.99 88.5 75.0 2.12 69.6 1.62 81.2 37.5 2.40 65.5 1.87 78.3 噻呋酰胺
thifluzamide
(24%, SC)75.0 3.59 48.4 2.12 75.4 清水
Water0 6.97 0 8.63 0 浙江绍兴
Shaoxing, Zhejiang11
(5%, EC)112.5 2.22 83.4 6.70 83.6 75.0 2.78 78.8 9.00 78.0 37.5 3.70 72.9 11.9 70.6 噻呋酰胺
thifluzamide (24%, SC)75.0 2.63 80.8 8.52 79.1 清水
Water0 6.97 0.00 8.63 0.00 -
[1] HAGERHALL C. Succinate: quinone oxidoreductases. Variations on a conserved theme[J]. Biochim Biophys Acta, 1997, 1320(2): 107-141. doi: 10.1016/S0005-2728(97)00019-4 [2] MELIN F, HELLWIG P. Redox properties of the membrane proteins from the respiratory chain[J]. Chem Rev, 2020, 120(18): 10244-10297. doi: 10.1021/acs.chemrev.0c00249 [3] LANCASTER C R, KROGER A, AUER M, et al. Structure of fumarate reductase from Wolinella succinogenes at 2.2 A resolution[J]. Nature, 1999, 402(6760): 377-385. doi: 10.1038/46483 [4] LANCASTER C R D. Succinate: quinone oxidoreductases: an overview[J]. Biochim Biophys Acta, 2002, 1553(1-2): 1-6. doi: 10.1016/S0005-2728(01)00240-7 [5] CECCHINI G. Function and structure of complex II of the respiratory chain[J]. Annu Rev Biochem, 2003, 72: 77-109. doi: 10.1146/annurev.biochem.72.121801.161700 [6] LI S Q, LI X S, ZHANG H M, et al. The research progress in and perspective of potential fungicides: succinate dehydrogenase inhibitors[J]. Bioorg Med Chem, 2021, 50: 116476. doi: 10.1016/j.bmc.2021.116476 [7] Fungal control agents by cross resistance pattern and mode of action 2021[EB/OL]. (2021). https://www.frac.info/docs/default-source/publications/frac-mode-of-action-poster/frac-moa-poster-2021.pdf?sfvrsn=a6f6499a_2. [8] 胡伟群. 病原真菌对琥珀酸脱氢酶抑制剂抗性研究进展[J]. 世界农药, 2020, 42(12): 1-5.HU W Q. Research progresses in resistance of plant pathogenic fungi to succinate dehydrogenase inhibitors[J]. World Pestic, 2020, 42(12): 1-5. [9] VIELBA-FERNÁNDEZ A, POLONIO Á, RUIZ-JIMÉNEZ L, et al. Fungicide resistance in powdery mildew fungi[J]. Microorganisms, 2020, 8(9): 1431. doi: 10.3390/microorganisms8091431 [10] ZHU F D, SHI Y X, XIE X W, et al. Occurrence, distribution, and characteristics of boscalid-resistant Corynespora cassiicola in China[J]. Plant Dis, 2019, 103(1): 69-76. doi: 10.1094/PDIS-11-17-1760-RE [11] OUTWATER C A, PROFFER T J, ROTHWELL N L, et al. Boscalid resistance in Blumeriella jaapii: distribution, effect on field efficacy, and molecular characterization[J]. Plant Dis, 2019, 103(6): 1112-1118. doi: 10.1094/PDIS-09-18-1555-RE [12] CHERRAD S, CHARNAY A, HERNANDEZ C, et al. Emergence of boscalid-resistant strains of Erysiphe necator in French vineyards[J]. Microbiol Res, 2018, 216: 79-84. doi: 10.1016/j.micres.2018.08.007 [13] SAMARAS A, HADJIPETROU C, KARAOGLANIDIS G. Bacillus amyloliquefaciens strain QST713 may contribute to the management of SDHI resistance in Botrytis cinerea[J]. Pest Manag Sci, 2021, 77(3): 1316-1327. doi: 10.1002/ps.6145 [14] MELLO F E, MATHIONI S M, FANTIN L H, et al. Sensitivity assessment and SDHC-I86F mutation frequency of Phakopsora pachyrhizi populations to benzovindiflupyr and fluxapyroxad fungicides from 2015 to 2019 in Brazil[J]. Pest Manag Sci, 2021, 77(10): 4331-4339. doi: 10.1002/ps.6466 [15] LIU S M, FU L Y, TAN H H, et al. Resistance to boscalid in Botrytis cinerea from greenhouse-grown tomato[J]. Plant Dis, 2021, 105(3): 628-635. doi: 10.1094/PDIS-06-20-1191-RE [16] IMRAN M, ALI E F, HASSAN S, et al. Characterization and sensitivity of Botrytis cinerea to benzimidazole and succinate dehydrogenase inhibitors fungicides, and illustration of the resistance profile[J]. Australas Plant Pathol, 2021, 50(5): 589-601. doi: 10.1007/s13313-021-00803-2 [17] SANG H, LEE H B. Molecular mechanisms of succinate dehydrogenase inhibitor resistance in phytopathogenic fungi[J]. Res Plant Dis, 2020, 26(1): 1-7. doi: 10.5423/RPD.2020.26.1.1 [18] MIYAMOTO T, HAYASHI K, OKADA R, et al. Resistance to succinate dehydrogenase inhibitors in field isolates of Podosphaera xanthii on cucumber: monitoring, cross-resistance patterns and molecular characterization[J]. Pestic Biochem Physiol, 2020, 169: 104646. doi: 10.1016/j.pestbp.2020.104646 [19] SIEROTZKI H, SCALLIET G. A review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides[J]. Phytopathology, 2013, 103(9): 880-887. doi: 10.1094/PHYTO-01-13-0009-RVW [20] AVENOT H F, MICHAILIDES T J. Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi[J]. Crop Prot, 2010, 29(7): 643-651. doi: 10.1016/j.cropro.2010.02.019 [21] 刘承先. 3, 4, 5-三氟-2′-硝基联苯的工艺合成[J]. 化工进展, 2015, 34(4): 1122-1125.LIU C X. Synthesis of 3,4,5-trifluoro-2′-nitro-1,1′-biphenyl[J]. Chem Ind Eng Prog, 2015, 34(4): 1122-1125. [22] 张一宾. 琥珀酸脱氢酶抑制剂类杀菌剂isofetamid的开发[J]. 世界农药, 2014, 36(3): 30-32. doi: 10.3969/j.issn.1009-6485.2014.03.007ZHANG Y B. Research and development of a SDHI fungicide: isofetamid[J]. World Pestic, 2014, 36(3): 30-32. doi: 10.3969/j.issn.1009-6485.2014.03.007 [23] HAO G F, WANG F, LI H, et al. Computational discovery of picomolar Qo site inhibitors of cytochrome bc1 complex[J]. J Am Chem Soc, 2012, 134(27): 11168-11176. doi: 10.1021/ja3001908 [24] ZHU X L, XIONG L, LI H, et al. Computational and experimental insight into the molecular mechanism of carboxamide inhibitors of succinate-ubquinone oxidoreductase[J]. ChemMedChem, 2014, 9(7): 1512-1521. doi: 10.1002/cmdc.201300456 [25] XIONG L, ZHU X L, GAO H W, et al. Discovery of potent succinate-ubiquinone oxidoreductase inhibitors via pharmacophore-linked fragment virtual screening approach[J]. J Agric Food Chem, 2016, 64(24): 4830-4837. doi: 10.1021/acs.jafc.6b00325 [26] XIONG L, LI H, JIANG L N, et al. Structure-based discovery of potential fungicides as succinate ubiquinone oxidoreductase inhibitors[J] J Agric Food Chem, 2017, 65(5): 1021-1029. [27] XIONG L, ZHU X L, SHEN Y Q, et al. Discovery of N-benzoxazol-5-yl-pyrazole-4-carboxamides as nanomolar SQR inhibitors[J]. Eur J Med Chem, 2015, 95: 424-434. doi: 10.1016/j.ejmech.2015.03.060 [28] 熊力. 新型琥珀酸脱氢酶抑制剂的设计、合成及生物活性研究 [D]. 武汉: 华中师范大学, 2016.XIONG L. Design, Synthesis and Biological Activities of Novel SDH Inhibitors[D]. Wuhan: Central China Normal University, 2016. -