• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含苯丙氨酸和1H-茚-1-酮类氯虫苯甲酰胺类似物的合成及杀虫活性

方佳琪 郝树林 杜晓华

方佳琪, 郝树林, 杜晓华. 含苯丙氨酸和1H-茚-1-酮类氯虫苯甲酰胺类似物的合成及杀虫活性[J]. 农药学学报, 2022, 24(4): 713-722. doi: 10.16801/j.issn.1008-7303.2022.0030
引用本文: 方佳琪, 郝树林, 杜晓华. 含苯丙氨酸和1H-茚-1-酮类氯虫苯甲酰胺类似物的合成及杀虫活性[J]. 农药学学报, 2022, 24(4): 713-722. doi: 10.16801/j.issn.1008-7303.2022.0030
FANG Jiaqi, HAO Shulin, DU Xiaohua. Synthesis and insecticidal activity of chlorantraniliprole analogs containing phenylalanine and 1H-inden-1-one[J]. Chinese Journal of Pesticide Science, 2022, 24(4): 713-722. doi: 10.16801/j.issn.1008-7303.2022.0030
Citation: FANG Jiaqi, HAO Shulin, DU Xiaohua. Synthesis and insecticidal activity of chlorantraniliprole analogs containing phenylalanine and 1H-inden-1-one[J]. Chinese Journal of Pesticide Science, 2022, 24(4): 713-722. doi: 10.16801/j.issn.1008-7303.2022.0030

含苯丙氨酸和1H-茚-1-酮类氯虫苯甲酰胺类似物的合成及杀虫活性

doi: 10.16801/j.issn.1008-7303.2022.0030
基金项目: 国家重点研发计划 (2016YFD0300708).
详细信息
    作者简介:

    方佳琪,1641254318@qq.com

    通讯作者:

    杜晓华,duxiaohua@zjut.edu.cn

  • 中图分类号: O626.2;TQ455.4

Synthesis and insecticidal activity of chlorantraniliprole analogs containing phenylalanine and 1H-inden-1-one

Funds: the National Key R&D Program (2016YFD0300708).
  • 摘要: 为了开发新的杀虫化合物,以氯虫苯甲酰胺为先导,2-甲基-3-氨基苯甲酸为起始原料,经过卤化生成5-氯-3-甲基-2-氨基苯甲酸;再与3-溴-1-(3-氯吡啶-2-吡啶基)-1H-吡唑-5-甲酸进行缩合反应,生成6-氯-2-(3-溴-1-(3-氯吡啶-2-吡啶基)-1H-吡唑-5-基)-8-甲基-4H-3,1-苯并噁嗪-4-酮;最后引入苯丙氨酸片段并经环化反应,分别合成了两个系列共计23 个新化合物( 45 ),其中化合物 4 为含苯丙氨酸的氯虫苯甲酰胺类似物,化合物 5 为由化合物4环化生成的含1H-茚-1-酮片段的氯虫苯甲酰胺类似物,所有化合物的结构均通过核磁共振氢谱(1H NMR)、碳谱(13C NMR)和高分辨质谱(HRMS)的表征及确证。初步室内杀虫活性测试结果表明,多数目标化合物对黏虫Mythinma separata具有较高的杀虫活性,其中14个化合物在100 mg/L下对黏虫Mythinma separata的致死率为100%,化合物 5k ( 1H-茚-1-酮片段中取代基为羟基 ) 在4和0.8 mg/L下的致死率分别为90%和70%,其LC50值为0.55 mg/L。分子对接结果表明,化合物 5k 与氯虫苯甲酰胺一样,也是作用于鱼尼汀受体(RyR),但与靶标结合的氨基酸残基不同,这种差异可能对黏虫的抗药性治理研究有益。
  • 1  目标化合物的设计策略

    1.  Design strategy of target compounds

    2  目标化合物4和5的合成路线

    2.  Synthetic routes of target compounds 4 and 5

    3  成环反应过程

    3.  Ring-forming reaction process

    图  1  氯虫苯甲酰胺与RyR N端结构域之间的理论结合模式

    Figure  1.  Theoretical binding mode between chlorantraniliprole and N-terminal domain of RyR

    图  2  5k与RyR N端结构域之间的理论结合模式

    Figure  2.  Theoretical binding mode between 5k and N-terminal domain of RyR

    表  1  目标化合物对黏虫的杀虫活性

    Table  1.   Insecticidal activities of the target compounds against oriental armyworm

    化合物
    Compd.
    死亡率
    Mortality/%
    质量浓度
    Mass concentration/(mg/L)
    1002040.8
    4a1001006030
    4b10060100
    4c1007000
    4d9080500
    4e10090500
    4f10090300
    4g1008000
    4h100705020
    4i0
    4j0
    4k10080600
    4l1008000
    5a100000
    5b0
    5c100906020
    5d0
    5e0
    5f903000
    5g100705010
    5h100805010
    5i100100700
    5j0
    5k1001009070
    氯虫苯甲酰胺
    chlorantraniliprole
    1001009080
    CK0000
    注: 表中“—”为未测定。Note: "—" in the table means not determined.
    下载: 导出CSV

    表  2  部分目标化合物的LC50

    Table  2.   The LC50 value of some target compounds (95% confidence limit)

    化合物
    Compound
    回归方程
    Regression equation
    相关
    系数
    r
    LC50 值 (95% 置信限)
    LC50 value
    (95% confidence
    limit)/ (mg/L)
    4a y = 3.8452 + 2.3618x 0.9900 3.80 (2.52~3.86)
    5i y = 4.1824 + 2.2863x 0.9907 2.28 (1.83~2.80)
    5k y = 0.5531 + 2.2629x 0.9936 0.55 (0.45~0.69)
    氯虫苯甲酰胺
    chlorantraniliprole
    y = 0.5423 + 2.2527x 0.8974 0.54 (0.44~0.71)
    下载: 导出CSV
  • [1] CHEN X J, CUI H R, FAN S Q, et al. Systemicity of chlorantraniliprole in velvetleaf (Abutilon theophrasti)[J]. J AOAC Int, 2013, 96(1): 1-6. doi: 10.5740/jaoacint.12-166
    [2] FENNER K, CANONICA S, WACKETT L P, et al. Evaluating pesticide degradation in the environment: blind spots and emerging opportunities[J]. Science, 2013, 341(6147): 752-758. doi: 10.1126/science.1236281
    [3] PANG S, YANG T X, HE L L. Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides[J]. Trends Anal Chem, 2016, 85: 73-82. doi: 10.1016/j.trac.2016.06.017
    [4] BAKKER L, SOK J, Van Der WERF W, et al. Kicking the habit: what makes and breaks farmers' intentions to reduce pesticide use?[J]. Ecol Econ, 2021, 180: 106868. doi: 10.1016/j.ecolecon.2020.106868
    [5] NEHRA M, DILBAGHI N, MARRAZZA G, et al. Emerging nanobiotechnology in agriculture for the management of pesticide residues[J]. J Hazard Mater, 2021, 401: 123369. doi: 10.1016/j.jhazmat.2020.123369
    [6] LECHENET M, DESSAINT F, PY G, et al. Reducing pesticide use while preserving crop productivity and profitability on arable farms[J]. Nat Plants, 2017, 3(3): 17008. doi: 10.1038/nplants.2017.8
    [7] DAMALAS C A, ELEFTHEROHORINOS I G. Pesticide exposure, safety issues, and risk assessment indicators[J]. Int J Environ Res Public Health, 2011, 8(5): 1402-1419. doi: 10.3390/ijerph8051402
    [8] YADAV I C, DEVI N L, SYED J H, et al. Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India[J]. Sci Total Environ, 2015, 511: 123-137. doi: 10.1016/j.scitotenv.2014.12.041
    [9] MD MEFTAUL I, VENKATESWARLU K, DHARMARAJAN R, et al. Pesticides in the urban environment: a potential threat that knocks at the door[J]. Sci Total Environ, 2020, 711: 134612. doi: 10.1016/j.scitotenv.2019.134612
    [10] HILLOCKS R J. Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture[J]. Crop Prot, 2012, 31(1): 85-93. doi: 10.1016/j.cropro.2011.08.008
    [11] SILVA V, MOL H G J, ZOMER P, et al. Pesticide residues in European agricultural soils: a hidden reality unfolded[J]. Sci Total Environ, 2019, 653: 1532-1545. doi: 10.1016/j.scitotenv.2018.10.441
    [12] SABARWAL A, KUMAR K, SINGH R P. Hazardous effects of chemical pesticides on human health: cancer and other associated disorders[J]. Environ Toxicol Pharmacol, 2018, 63: 103-114. doi: 10.1016/j.etap.2018.08.018
    [13] XU M L, GAO Y, HAN X X, et al. Detection of pesticide residues in food using surface-enhanced Raman spectroscopy: a review[J]. J Agric Food Chem, 2017, 65(32): 6719-6726. doi: 10.1021/acs.jafc.7b02504
    [14] 杜晓华, 方佳琪, 楼佳明. 氯虫苯甲酰胺衍生物的合成及杀虫活性[J]. 浙江工业大学学报, 2022, 50(1): 44-49. doi: 10.3969/j.issn.1006-4303.2022.01.006

    DU X H, FANG J Q, LOU J M. Synthesis and insecticidal activity of derivatives of chlorantraniliprole[J]. J Zhejiang Univ, 2022, 50(1): 44-49. doi: 10.3969/j.issn.1006-4303.2022.01.006
    [15] SHINTANI R, TAKATSU K, KATOH T, et al. Rhodium-catalyzed rearrangement of aryl bis(alkynyl) carbinols to 3-alkynyl-1-indanones[J]. Angew Chem Int Ed, 2008, 47(8): 1447-1449. doi: 10.1002/anie.200704818
    [16] 王艳军, 张大永, 吴晓明. 氯虫苯甲酰胺的合成[J]. 农药, 2010, 49(3): 170-173. doi: 10.3969/j.issn.1006-0413.2010.03.005

    WANG Y J, ZHANG D Y, WU X M. Synthesis of chlorantraniliprole[J]. Agrochemicals, 2010, 49(3): 170-173. doi: 10.3969/j.issn.1006-0413.2010.03.005
    [17] RODITAKIS E, VASAKIS E, GARCÍA-VIDAL L, et al. A four-year survey on insecticide resistance and likelihood of chemical control failure for tomato leaf miner Tuta absoluta in the European/Asian region[J]. J Pest Sci, 2018, 91(1): 421-435. doi: 10.1007/s10340-017-0900-x
    [18] ZHANG L Z, ZHANG J F, SUN D Q. Improved preparation of 5-chloro-2-methoxycarbonyl-1-indanone for total synthesis of indoxacarb[J]. Asian J Chem, 2012, 24(3): 1413-1414.
    [19] HAO W B, FU C L, YU H J, et al. Design, synthesis and structure-activity relationship of indoxacarb analogs as voltage-gated sodium channel blocker[J]. Bioorg Med Chem Lett, 2015, 25(20): 4576-4579. doi: 10.1016/j.bmcl.2015.08.058
    [20] MCCANN S F, ANNIS G D, SHAPIRO R, et al. The discovery of indoxacarb: oxadiazines as a new class of pyrazoline-type insecticides[J]. Pest Manag Sci, 2001, 57(2): 153-164. doi: 10.1002/1526-4998(200102)57:2<153::AID-PS288>3.0.CO;2-O
    [21] 薛伟, 郑玉国, 郭晴晴, 等. 双酰胺类衍生物的合成及抑菌活性[J]. 化学研究与应用, 2012, 24(3): 427-432. doi: 10.3969/j.issn.1004-1656.2012.03.017

    XUE W, ZHENG Y G, GUO Q Q, et al. Synthesis and biological activity of bisamide compounds containing p-chlorophenyl and benzothiazole[J]. Chem Res Appl, 2012, 24(3): 427-432. doi: 10.3969/j.issn.1004-1656.2012.03.017
    [22] ERNST-RUSSELL M A, CHAI C L L, WARDLAW J H, et al. Euplectin and coneuplectin, new naphthopyrones from the lichen Flavoparmelia euplecta[J]. J Nat Prod, 2000, 63(1): 129-131. doi: 10.1021/np9903245
    [23] ZHANG J F, XU J Y, WANG B L, et al. Synthesis and insecticidal activities of novel anthranilic diamides containing acylthiourea and acylurea[J]. J Agric Food Chem, 2012, 60(31): 7565-7572. doi: 10.1021/jf302446c
    [24] LIN L Y, LIU C, QIN J, et al. Crystal structure of ryanodine receptor N-terminal domain from Plutella xylostella reveals two potential species-specific insecticide-targeting sites[J]. Insect Biochem Mol Biol, 2018, 92: 73-83. doi: 10.1016/j.ibmb.2017.11.009
    [25] CUSHMAN M, CHENG L. Stereoselective oxidation by thionyl chloride leading to the indeno[1, 2-c]isoquinoline system[J]. J Org Chem, 1978, 43(19): 3781-3783. doi: 10.1021/jo00413a036
    [26] HAN J T, DONG H B, XU Z H, et al. Facile synthesis of 5-arylidene thiohydantoin by sequential sulfonylation/desulfination reaction[J]. Int J Mol Sci, 2013, 14(6): 12484-12495. doi: 10.3390/ijms140612484
    [27] LUO M, CHEN Q C, WANG J, et al. Novel chlorantraniliprole derivatives as potential insecticides and probe to chlorantraniliprole binding site on ryanodine receptor[J]. Bioorg Med Chem Lett, 2014, 24(8): 1987-1992. doi: 10.1016/j.bmcl.2014.02.053
  • 辅助材料-目标化合物的核磁共振图谱及高分辨质谱.pdf
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  22
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-23
  • 录用日期:  2022-03-01
  • 网络出版日期:  2022-03-29
  • 刊出日期:  2022-08-03

目录

    /

    返回文章
    返回