Synthesis and insecticidal activity of chlorantraniliprole analogs containing phenylalanine and 1H-inden-1-one
-
摘要: 为了开发新的杀虫化合物,以氯虫苯甲酰胺为先导,2-甲基-3-氨基苯甲酸为起始原料,经过卤化生成5-氯-3-甲基-2-氨基苯甲酸;再与3-溴-1-(3-氯吡啶-2-吡啶基)-1H-吡唑-5-甲酸进行缩合反应,生成6-氯-2-(3-溴-1-(3-氯吡啶-2-吡啶基)-1H-吡唑-5-基)-8-甲基-4H-3,1-苯并噁嗪-4-酮;最后引入苯丙氨酸片段并经环化反应,分别合成了两个系列共计23 个新化合物( 4 和 5 ),其中化合物 4 为含苯丙氨酸的氯虫苯甲酰胺类似物,化合物 5 为由化合物4环化生成的含1H-茚-1-酮片段的氯虫苯甲酰胺类似物,所有化合物的结构均通过核磁共振氢谱(1H NMR)、碳谱(13C NMR)和高分辨质谱(HRMS)的表征及确证。初步室内杀虫活性测试结果表明,多数目标化合物对黏虫Mythinma separata具有较高的杀虫活性,其中14个化合物在100 mg/L下对黏虫Mythinma separata的致死率为100%,化合物 5k ( 1H-茚-1-酮片段中取代基为羟基 ) 在4和0.8 mg/L下的致死率分别为90%和70%,其LC50值为0.55 mg/L。分子对接结果表明,化合物 5k 与氯虫苯甲酰胺一样,也是作用于鱼尼汀受体(RyR),但与靶标结合的氨基酸残基不同,这种差异可能对黏虫的抗药性治理研究有益。Abstract: In order to develop new insecticidal compounds with chlorantraniliprole as the lead, 2-methyl-3-aminobenzoic acid was used as the starting material, which was halogenated to generate 5-chloro-3-methyl-2-aminobenzoic acid; and then it was condensed with 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylic acid to give 2-(3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl)-6-chloro-8-methyl-4H-benzo[d][1,3]oxazin-4-one; finally, a phenylalanine fragment was introduced and cyclized to synthesize two series of 23 new compounds ( 4 and 5 ), compound 4 was chlorantraniliprole analog containing phenylalanine, and compound 5 was chlorantraniliprole analog containing 1H-inden-1-one fragment cyclized by compound 4 . The structures of all compounds were characterized and confirmed by proton nuclear magnetic resonance spectroscopy (1H NMR), carbon spectroscopy (13C NMR) and high resolution mass spectrometry (HRMS). The preliminary indoor insecticidal activity tests showed that most target compounds had high insecticidal activity against oriental armyworm, Mythinma separata, with 14 compounds had 100% mortalities against M. separata at 100 mg/L, and compound 5k (the substituent in the 1H-inden-1-one fragment was hydroxyl) had 90% and 70% mortalities at 4 mg/L and 0.8 mg/L, respectively. And its LC50 value was 0.55 mg/L. In addition, molecular docking results showed that compound 5k also acted on ryanodine (RyR), just like chlorantraniliprole, but the amino acid residues bound to the target were different, which might be beneficial for research on drug resistance management of oriental armyworm.
-
Key words:
- 1H-inden-1-one /
- chlorantraniliprole /
- phenylalanine /
- Mythinma separata /
- insecticidal activity
-
表 1 目标化合物对黏虫的杀虫活性
Table 1. Insecticidal activities of the target compounds against oriental armyworm
化合物
Compd.死亡率
Mortality/%质量浓度
Mass concentration/(mg/L)100 20 4 0.8 4a 100 100 60 30 4b 100 60 10 0 4c 100 70 0 0 4d 90 80 50 0 4e 100 90 50 0 4f 100 90 30 0 4g 100 80 0 0 4h 100 70 50 20 4i 0 — — — 4j 0 — — — 4k 100 80 60 0 4l 100 80 0 0 5a 100 0 0 0 5b 0 — — — 5c 100 90 60 20 5d 0 — — — 5e 0 — — — 5f 90 30 0 0 5g 100 70 50 10 5h 100 80 50 10 5i 100 100 70 0 5j 0 — — — 5k 100 100 90 70 氯虫苯甲酰胺
chlorantraniliprole100 100 90 80 CK 0 0 0 0 注: 表中“—”为未测定。Note: "—" in the table means not determined. 表 2 部分目标化合物的LC50值
Table 2. The LC50 value of some target compounds (95% confidence limit)
化合物
Compound回归方程
Regression equation相关
系数
rLC50 值 (95% 置信限)
LC50 value
(95% confidence
limit)/ (mg/L)4a y = 3.8452 + 2.3618x 0.9900 3.80 (2.52~3.86) 5i y = 4.1824 + 2.2863x 0.9907 2.28 (1.83~2.80) 5k y = 0.5531 + 2.2629x 0.9936 0.55 (0.45~0.69) 氯虫苯甲酰胺
chlorantraniliproley = 0.5423 + 2.2527x 0.8974 0.54 (0.44~0.71) -
[1] CHEN X J, CUI H R, FAN S Q, et al. Systemicity of chlorantraniliprole in velvetleaf (Abutilon theophrasti)[J]. J AOAC Int, 2013, 96(1): 1-6. doi: 10.5740/jaoacint.12-166 [2] FENNER K, CANONICA S, WACKETT L P, et al. Evaluating pesticide degradation in the environment: blind spots and emerging opportunities[J]. Science, 2013, 341(6147): 752-758. doi: 10.1126/science.1236281 [3] PANG S, YANG T X, HE L L. Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides[J]. Trends Anal Chem, 2016, 85: 73-82. doi: 10.1016/j.trac.2016.06.017 [4] BAKKER L, SOK J, Van Der WERF W, et al. Kicking the habit: what makes and breaks farmers' intentions to reduce pesticide use?[J]. Ecol Econ, 2021, 180: 106868. doi: 10.1016/j.ecolecon.2020.106868 [5] NEHRA M, DILBAGHI N, MARRAZZA G, et al. Emerging nanobiotechnology in agriculture for the management of pesticide residues[J]. J Hazard Mater, 2021, 401: 123369. doi: 10.1016/j.jhazmat.2020.123369 [6] LECHENET M, DESSAINT F, PY G, et al. Reducing pesticide use while preserving crop productivity and profitability on arable farms[J]. Nat Plants, 2017, 3(3): 17008. doi: 10.1038/nplants.2017.8 [7] DAMALAS C A, ELEFTHEROHORINOS I G. Pesticide exposure, safety issues, and risk assessment indicators[J]. Int J Environ Res Public Health, 2011, 8(5): 1402-1419. doi: 10.3390/ijerph8051402 [8] YADAV I C, DEVI N L, SYED J H, et al. Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India[J]. Sci Total Environ, 2015, 511: 123-137. doi: 10.1016/j.scitotenv.2014.12.041 [9] MD MEFTAUL I, VENKATESWARLU K, DHARMARAJAN R, et al. Pesticides in the urban environment: a potential threat that knocks at the door[J]. Sci Total Environ, 2020, 711: 134612. doi: 10.1016/j.scitotenv.2019.134612 [10] HILLOCKS R J. Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture[J]. Crop Prot, 2012, 31(1): 85-93. doi: 10.1016/j.cropro.2011.08.008 [11] SILVA V, MOL H G J, ZOMER P, et al. Pesticide residues in European agricultural soils: a hidden reality unfolded[J]. Sci Total Environ, 2019, 653: 1532-1545. doi: 10.1016/j.scitotenv.2018.10.441 [12] SABARWAL A, KUMAR K, SINGH R P. Hazardous effects of chemical pesticides on human health: cancer and other associated disorders[J]. Environ Toxicol Pharmacol, 2018, 63: 103-114. doi: 10.1016/j.etap.2018.08.018 [13] XU M L, GAO Y, HAN X X, et al. Detection of pesticide residues in food using surface-enhanced Raman spectroscopy: a review[J]. J Agric Food Chem, 2017, 65(32): 6719-6726. doi: 10.1021/acs.jafc.7b02504 [14] 杜晓华, 方佳琪, 楼佳明. 氯虫苯甲酰胺衍生物的合成及杀虫活性[J]. 浙江工业大学学报, 2022, 50(1): 44-49. doi: 10.3969/j.issn.1006-4303.2022.01.006DU X H, FANG J Q, LOU J M. Synthesis and insecticidal activity of derivatives of chlorantraniliprole[J]. J Zhejiang Univ, 2022, 50(1): 44-49. doi: 10.3969/j.issn.1006-4303.2022.01.006 [15] SHINTANI R, TAKATSU K, KATOH T, et al. Rhodium-catalyzed rearrangement of aryl bis(alkynyl) carbinols to 3-alkynyl-1-indanones[J]. Angew Chem Int Ed, 2008, 47(8): 1447-1449. doi: 10.1002/anie.200704818 [16] 王艳军, 张大永, 吴晓明. 氯虫苯甲酰胺的合成[J]. 农药, 2010, 49(3): 170-173. doi: 10.3969/j.issn.1006-0413.2010.03.005WANG Y J, ZHANG D Y, WU X M. Synthesis of chlorantraniliprole[J]. Agrochemicals, 2010, 49(3): 170-173. doi: 10.3969/j.issn.1006-0413.2010.03.005 [17] RODITAKIS E, VASAKIS E, GARCÍA-VIDAL L, et al. A four-year survey on insecticide resistance and likelihood of chemical control failure for tomato leaf miner Tuta absoluta in the European/Asian region[J]. J Pest Sci, 2018, 91(1): 421-435. doi: 10.1007/s10340-017-0900-x [18] ZHANG L Z, ZHANG J F, SUN D Q. Improved preparation of 5-chloro-2-methoxycarbonyl-1-indanone for total synthesis of indoxacarb[J]. Asian J Chem, 2012, 24(3): 1413-1414. [19] HAO W B, FU C L, YU H J, et al. Design, synthesis and structure-activity relationship of indoxacarb analogs as voltage-gated sodium channel blocker[J]. Bioorg Med Chem Lett, 2015, 25(20): 4576-4579. doi: 10.1016/j.bmcl.2015.08.058 [20] MCCANN S F, ANNIS G D, SHAPIRO R, et al. The discovery of indoxacarb: oxadiazines as a new class of pyrazoline-type insecticides[J]. Pest Manag Sci, 2001, 57(2): 153-164. doi: 10.1002/1526-4998(200102)57:2<153::AID-PS288>3.0.CO;2-O [21] 薛伟, 郑玉国, 郭晴晴, 等. 双酰胺类衍生物的合成及抑菌活性[J]. 化学研究与应用, 2012, 24(3): 427-432. doi: 10.3969/j.issn.1004-1656.2012.03.017XUE W, ZHENG Y G, GUO Q Q, et al. Synthesis and biological activity of bisamide compounds containing p-chlorophenyl and benzothiazole[J]. Chem Res Appl, 2012, 24(3): 427-432. doi: 10.3969/j.issn.1004-1656.2012.03.017 [22] ERNST-RUSSELL M A, CHAI C L L, WARDLAW J H, et al. Euplectin and coneuplectin, new naphthopyrones from the lichen Flavoparmelia euplecta[J]. J Nat Prod, 2000, 63(1): 129-131. doi: 10.1021/np9903245 [23] ZHANG J F, XU J Y, WANG B L, et al. Synthesis and insecticidal activities of novel anthranilic diamides containing acylthiourea and acylurea[J]. J Agric Food Chem, 2012, 60(31): 7565-7572. doi: 10.1021/jf302446c [24] LIN L Y, LIU C, QIN J, et al. Crystal structure of ryanodine receptor N-terminal domain from Plutella xylostella reveals two potential species-specific insecticide-targeting sites[J]. Insect Biochem Mol Biol, 2018, 92: 73-83. doi: 10.1016/j.ibmb.2017.11.009 [25] CUSHMAN M, CHENG L. Stereoselective oxidation by thionyl chloride leading to the indeno[1, 2-c]isoquinoline system[J]. J Org Chem, 1978, 43(19): 3781-3783. doi: 10.1021/jo00413a036 [26] HAN J T, DONG H B, XU Z H, et al. Facile synthesis of 5-arylidene thiohydantoin by sequential sulfonylation/desulfination reaction[J]. Int J Mol Sci, 2013, 14(6): 12484-12495. doi: 10.3390/ijms140612484 [27] LUO M, CHEN Q C, WANG J, et al. Novel chlorantraniliprole derivatives as potential insecticides and probe to chlorantraniliprole binding site on ryanodine receptor[J]. Bioorg Med Chem Lett, 2014, 24(8): 1987-1992. doi: 10.1016/j.bmcl.2014.02.053 -
辅助材料-目标化合物的核磁共振图谱及高分辨质谱.pdf
-