Optimization of inhibition conditions of Trichoderma atroviride T2 fermentation liquid protein extract TraT2A and its field control efficacy for lily leaf spot disease
-
摘要: 为了提高深绿木霉Trichoderma atroviride T2菌株发酵液蛋白提取物TraT2A的抑菌活性和光稳定性,采用菌丝生长速率法,通过对紫外保护剂 (抗坏血酸、腐殖酸) 和辅助剂 (IE-08、SP-4821A和SP-4821B) 的筛选,优化了TraT2A对百合叶斑病菌Alternaria alternata的抑菌条件,并测定了其对百合叶斑病的田间防治效果。结果表明:TraT2A在200.00 mg/mL下对百合叶斑病菌A.alternata的抑菌作用较好,抑制率为72.12%;随着紫外光照时间的延长,TraT2A的抑菌活性逐渐降低,添加5.00 mg/mL的腐殖酸对TraT2A有较好的紫外保护作用,抑制率 (69.01%) 比不加紫外保护剂对照 (29.37%) 提高39.64%;添加0.17 mg/mL 的辅助剂SP-4821A对TraT2A活性的提高效果最好,抑制率 (95.13%) 比TraT2A对照 (69.16%) 提高25.97%。按照优化后的配方:200 g TraT2A (质量浓度为200.00 mg/mL) + 5 g腐殖酸 (质量浓度为5.00 mg/mL) + 0.17 g SP-4821A (质量浓度为0.17 mg/mL) + 794.83 mL灭菌水,进行田间药效试验,结果发现其对百合叶斑病的防治效果为80.37%。该研究结果为进一步开发防治百合病害的TraT2A制剂提供了理论依据。Abstract: In order to improve the inhibition activity and light stability of the protein extract TraT2A from the fermentation broth of Trichoderma atroviride T2 strain, the ultraviolet protective agents (ascorbic acid, humic acid) and the auxiliary agent (IE-08, SP-4821A and SP-4821B) were screened, the inhibition condition of TraT2A for Alternaria alternata were optimized through the colony growth rate test, and the field control efficacy on lily leaf spot disease was determined. The results showed that TraT2A had a good inhibitory effect on A.alternata at 200.00 mg/mL and the inhibitory rate was 72.12%. With the prolongation of the UV illumination time, the inhibition activity of TraT2A gradually decreases. The addition of 5.00 mg/mL humic acid had an excellent UV protection effect on TraT2A and its inhibition rate (69.01%) increased by 39.64% compared with that without a UV protection agent (29.37%). The addition of 0.17 mg/mL adjuvant of SP-4821A increased the inhibition activity of TraT2A most significantly and the inhibition rate (95.13%) increased by 25.97% compared with the TraT2A control (69.16%). According to the optimized formula, 200 g TraT2A (the mass concentration was 200.00 mg/mL), 5 g humic acid (the mass concentration was 5.00 mg/mL), 0.17 g SP-4821A (the mass concentration was 0.17 mg/mL) and 794.83 mL sterilized water was mixed and the field control efficacy of the mixture was tested on lily leaf spot disease, the result showed that its field control efficacy was 80.37%. The research results provide a theoretical basis for the further development of TraT2A preparations for the control of lily diseases.
-
表 1 TraT2A对百合叶斑病菌的抑菌作用
Table 1. The inhibition effect of TraT2A on A. alternata
TraT2A 质量浓度
TraT2A concentration/(mg/mL)抑制率
Inhibition rate/%200.00 72.12 ± 0.25 aA 100.00 67.31 ± 0.68 bB 66.67 26.92 ± 0.57 cC 注:表中数据为平均值 ± 标准误差。同列数据后不同小写和大写字母分别表示经Duncan氏新复极差法检验在0.05和0.01水平上差异显著。Note: Data in the table were shown as mean ± standard error. In the same column of data, different lowercase or capital letters indicated that there were significant differences at 0.05 and 0.01 levels, respectively. 表 2 紫外光照射时间对TraT2A抑菌活性的影响 (200.00 mg/mL)
Table 2. The influence of UV irradiation time on the inhibition activity of TraT2A (200.00 mg/mL)
处理
Treatment紫外光照射时间
UV irradiation time/min抑制率
Inhibition rate/%TraT2 A 10 59.68 ± 0.23 bB 20 45.70 ± 0.47 cC 30 29.57 ± 0.42 dD 40 20.61 ± 0.59 eE TraT2A 对照
TraT2A control0 72.04 ± 0.21 aA CK 0 — 注:表中数据为平均值 ± 标准误差。同列数据后不同小写和大写字母分别表示经Duncan氏新复极差法检验在0.05和0.01水平上差异显著。Note: Data in the table were shown as mean ± standard error. In the same column of data, different lowercase or capital letters indicated that there were significant differences at 0.05 and 0.01 levels, respectively. 表 3 紫外保护剂对TraT2A抑菌活性的影响 (200.00 mg/mL)
Table 3. The influence of UV protective agents on the inhibition activity of TraT2A (200.00 mg/mL)
处理
Treatment紫外光照射时间
UV irradiation time/min抑制率
Inhibition rate/%TraT2A + 抗坏血酸
TraT2A plus ascorbic acid30 54.41 ± 0.17 cC TraT2A + 腐殖酸
TraT2A plus humic acid30 69.01 ± 0.67 bB TraT2 A 30 29.37 ± 0.41 dD TraT2 A 0 70.45 ± 0.57 aA 抗坏血酸
Ascorbic acid0 23.24 ± 0.48 eE 腐殖酸
Humic acid0 3.18 ± 0.43 fF CK 0 — 注:表中数据为平均值 ± 标准误差。同列数据后不同小写和大写字母分别表示经Duncan氏新复极差法检验在0.05和0.01水平上差异显著。Note: Data in the table were shown as mean ± standard error. In the same column of data, different lowercase or capital letters indicated that there were significant differences at 0.05 and 0.01 levels, respectively. 表 4 辅助剂对TraT2A抑菌活性的影响 (200.00 mg/mL)
Table 4. The influence of adjuvants on the inhibition activity of TraT2A (200.00 mg/mL)
处理
Treatment浓度
Concentration/(mg/mL)抑制率
Inhibition rate/%辅助剂
AdjuvantTraT2A + 辅助剂
TraT2A + adjuvant与 TraT2A 对照相比抑菌作用提高百分点
Increase percentage points of
inhibition effect compared with TraT2A controlIE-08 0.50 15.56 ± 0.89 aA 87.55 ± 0.53 aA 18.36 aA 0.25 12.81 ± 0.61 bB 81.46 ± 0.99 bB 12.30 bB 0.13 9.88 ± 0.36 cC 76.74 ± 0.73 cC 7.58 cC 0.07 5.81 ± 0.82 dD 74.44 ± 0.95 dD 5.28 dD 0.04 1.62 ± 0.94 eE 70.24 ± 0.63 eE 1.08 eE SP-4821 B 0.17 13.29 ± 0.60 aA 88.61 ± 0.98 aA 19.45 aA 0.09 10.96 ± 0.67 bB 80.50 ± 0.61 bB 11.34 bB 0.05 9.28 ± 0.32 cC 73.35 ± 0.44 cC 4.19 cC 0.03 6.77 ± 0.79 dD 71.55 ± 0.51 cdCD 2.39 cdCD 0.02 3.41 ± 0.93 eE 71.03 ± 0.46 deDE 1.87 dD SP-4821 A 0.17 18.74 ± 0.18 aA 95.13 ± 0.61 aA 25.97 aA 0.09 14.84 ± 0.07 bB 82.70 ± 0.69 bB 13.54 bB 0.05 11.49 ± 0.89 cC 75.10 ± 0.58 cC 5.94 cC 0.03 8.38 ± 1.01 dD 73.33 ± 0.59 dD 4.17 dD 0.02 5.99 ± 0.99 eE 70.59 ± 0.48 eE 1.43 eE TraT2A 对照
TraT2A control200.00 — 69.16 ± 0.32 eE — 注:表中数据为平均值 ± 标准误差。同列数据后不同小写和大写字母分别表示经Duncan氏新复极差法检验在0.05和0.01水平上差异显著。 Note: Data in the table were shown as mean ± standard error. In the same column of data, different lowercase or capital letters indicated that there were significant differences at 0.05 and 0.01 levels, respectively. 表 5 TraT2A与紫外保护剂、辅助剂混合液对百合叶斑病的田间防效
Table 5. The field control efficacy of TraT2A + UV protective agents + adjuvants mixture for lily leaf spot
处理
Treatment施药前病情
指数
Disease index
before
treatment第 1 次施药后 10 d
Ten days after the
first treatment第 2 次施药后 10 d
Ten days after the
second treatment第 3 次施药后 10 d
Ten days after the
third treatment病情
指数
Disease
index防治
效果
Control
efficacy/
%病情
指数
Disease
index防治
效果
Control
efficacy/
%病情
指数
Disease
index防治
效果
Control
efficacy/
%200.00 mg/mL TraT2A + 5.00 mg/mL 腐殖酸 + 0.17 mg/mL SP-4821A
200.00 mg/mLTraT2A + 5.00 mg/mL humic acid + 0.17 mg/mL SP-4821 A3.04 5.17 68.19 aA 5.81 75.41 aA 6.13 80.37 aA 200.00 mg/mL TraT2 A 3.32 8.23 53.64 bB 10.04 61.08 bB 12.46 63.47 bB 5.00 mg/mL腐殖酸
5.00 mg/mL Humic acid3.09 15.33 7.22 dD 22.03 8.25 dD 28.97 8.75 dD 0.17 mg/mL SP-4821 A 3.25 15.27 12.13 cC 21.76 13.84 cC 28.53 14.55 cC CK 3.14 16.79 — 24.40 — 32.26 — 注:同列数据后不同小写和大写字母分别表示经Duncan氏新复极差法检验在0.05和0.01水平上差异显著。Note: In the same column of data, different lowercase or capital letters indicated that there were significant differences at 0.05 and 0.01 levels, respectively. -
[1] 阮盈盈, 刘峰. 木霉菌生物防治作用机制与应用研究进展[J]. 浙江农业科学, 2020, 61(11): 2290-2294.RUAN Y Y, LIU F. Research progress of biological control mechanism and application of Trichoderma[J]. J Zhejiang Agric Sci, 2020, 61(11): 2290-2294. [2] 袁扬, 王胤晨, 韩玉竹, 等. 木霉菌在农业中的应用研究进展[J]. 江苏农业科学, 2018, 46(3): 10-14.YUAN Y, WANG Y C, HAN Y Z, et al. Research progress on the application of Trichoderma in agriculture[J]. Jiangsu Agric Sci, 2018, 46(3): 10-14. [3] 陈捷, 朱洁伟, 张婷, 等. 木霉菌生物防治作用机理与应用研究进展[J]. 中国生物防治学报, 2011, 27(2): 145-151.CHEN J, ZHU J W, ZHANG T, et al. Progress on mechanism and applications of Trichoderma as a biocontrol microbe[J]. Chin J Biol Control, 2011, 27(2): 145-151. [4] 胡琼, 刘茂泉. 木霉菌促生与拮抗作用研究进展[J]. 农药, 2019, 58(7): 478-482.HU Q, LIU M Q. Research progress of plant growth promotion and antagonistic action of Trichoderma[J]. Agrochemicals, 2019, 58(7): 478-482. [5] 梁巧兰, 王芳, 魏列新, 等. 深绿木霉 T2 菌株对百合疫霉拮抗作用及机制[J]. 植物保护, 2011, 37(6): 164-167. doi: 10.3969/j.issn.0529-1542.2011.06.033LIANG Q L, WANG F, WEI L X, et al. Antagonistic mechanisms of Trichoderma atroviride T2 strain against Phytophthora nicotianae[J]. Plant Prot, 2011, 37(6): 164-167. doi: 10.3969/j.issn.0529-1542.2011.06.033 [6] 张瑾, 张树武, 徐秉良, 等. 长枝木霉菌抑菌谱测定及其抑菌作用机理研究[J]. 中国生态农业学报, 2014, 22(6): 661-667.ZHANG J, ZHANG S W, XU B L, et al. Determining antifungal spectrum and mechanism of Trichoderma longibrachiatum in vitro[J]. Chin J Eco Agric, 2014, 22(6): 661-667. [7] 尤佳琪, 吴明德, 李国庆. 木霉在植物病害生物防治中的应用及作用机制[J]. 中国生物防治学报, 2019, 35(6): 966-976.YOU J Q, WU M D, LI G Q. Application and mechanism of Trichoderma in biological control of plant disease[J]. Chin J Biol Control, 2019, 35(6): 966-976. [8] 古丽君, 徐秉良, 梁巧兰, 等. 生防木霉菌 T2 菌株对禾草腐霉病抑菌作用及机制研究[J]. 草业学报, 2011, 20(2): 46-51. doi: 10.11686/cyxb20110205GU L J, XU B L, LIANG Q L, et al. Antagonism and mechanism of action of Trichoderma aureoviride against Pythium aphanidermatum causing turfgrass root rot[J]. Acta Prataculturae Sinica, 2011, 20(2): 46-51. doi: 10.11686/cyxb20110205 [9] BAIYEE B, ITO S I, SUNPAPAO A. Trichoderma asperellum T1 mediated antifungal activity and induced defense response against leaf spot fungi in lettuce (Lactuca sativa L. )[J]. Physiol Mol Plant Pathol, 2019, 106: 96-101. doi: 10.1016/j.pmpp.2018.12.009 [10] 朱洁伟, 吴琼, 陈捷. 绿木霉 Sm1 基因的克隆、原核表达及蛋白纯化[J]. 植物病理学报, 2012, 42(3): 334-336. doi: 10.3969/j.issn.0412-0914.2012.03.017ZHU J W, WU Q, CHEN J. Sm1 gene cloning from Trichoderma virens, prokaryotic expression and protein purification[J]. Acta Phytopathologica Sinica, 2012, 42(3): 334-336. doi: 10.3969/j.issn.0412-0914.2012.03.017 [11] 韩亮, 梁巧兰, 周其宇. 深绿木霉 T2 发酵液蛋白提取物TraT2A诱导兰州百合抗灰霉病研究[J]. 中国农学通报, 2016, 32(20): 44-50. doi: 10.11924/j.issn.1000-6850.casb16020103HAN L, LIANG Q L, ZHOU Q Y. Resistance of Lanzhou lily to Botrytis cinerea induced by protein extract TraT2A from Trichoderma atroviride T2 fermentation liquid[J]. Chin Agric Sci Bull, 2016, 32(20): 44-50. doi: 10.11924/j.issn.1000-6850.casb16020103 [12] 梁巧兰, 韩亮, 周其宇. 深绿木霉 T2 发酵液蛋白分离物诱导抗病作用研究[J]. 草原与草坪, 2016, 36(3): 28-34. doi: 10.3969/j.issn.1009-5500.2016.03.006LIANG Q L, HAN L, ZHOU Q Y. Study on induced resistant of protein isolate from fermentation broth of Trichoderma atroviride T2[J]. Grassland Turf, 2016, 36(3): 28-34. doi: 10.3969/j.issn.1009-5500.2016.03.006 [13] 梁巧兰, 张娜, 魏列新, 等. 深绿木霉蛋白质 TraT2A 诱导兰州百合抗灰霉病的作用[J]. 中国生物防治学报, 2017, 33(4): 545-551.LIANG Q L, ZHANG N, WEI L X, et al. Effect of Trichoderma atroviride proteinaceous TraT2A induced Lanzhou lily resistant to gray mold caused by Botrytis cinerea[J]. Chin J Biol Control, 2017, 33(4): 545-551. [14] 胡美英, 黄炳球, 肖整玉, 等. 表面活性剂对杀虫剂的增效机制及药效研究[J]. 华南农业大学学报, 1998, 19(3): 44-49.HU M Y, HUANG B Q, XIAO Z Y, et al. Studies on the effect and mode of synergism of surfactant mixed with insecticides against Litchi insect pests[J]. J South China Agric Univ, 1998, 19(3): 44-49. [15] 杨森, 杨留勇. 茶叶中农药使用现状与降低农药残留的措施研究[J]. 安徽农学通报, 2018, 24(10): 66-68. doi: 10.3969/j.issn.1007-7731.2018.10.028YANG S, YANG L Y. Current situation of pesticide use in tea and measures for reducing pesticide residues[J]. Anhui Agric Sci Bull, 2018, 24(10): 66-68. doi: 10.3969/j.issn.1007-7731.2018.10.028 [16] 韩玲. 拮抗菌和大蒜对百合枯萎病的抑菌和防病作用研究[D]. 杨凌: 西北农林科技大学, 2010.HAN L. Inhibitive and prevent effects of biocontrol agents and garlic bulb crude extracts on lily Fusarium wilt[D]. Yangling: Northwest A&F University, 2010. [17] SAKSIRIRAT W, BOONSAKDAPORN N, PISAN S, et al. An application of the micro-parasite,Trichoderma hazianum Rifai in combination with mancozeb for control tomato stem rot in north Thailand//TANG W, COOK R J, ROVIR A. Advances in biological control of plant diseases[M]. Beijing: China Agricultural University Press, 1996: 327-329. [18] 武志江, 李业燕, 王亚军, 等. 百合枯萎病拮抗细菌的筛选、鉴定及其抑菌物质研究[J]. 微生物学通报, 2015, 42(7): 1307-1320.WU Z J, LI Y Y, WANG Y J, et al. Isolation and identification of an antagonistic bacterium against Fusarium on lily and its antifungal substances[J]. Microbiol China, 2015, 42(7): 1307-1320. [19] 王磊, 宋文勇, 曹雄飞, 等. 一种改性脂质体及其组合物、制备方法与应用[P]: ZL 2019 11069505.2. 2020-02-04.WANG L, SONG W Y, CAO X F, et al. A kind modified liposome and its combination, preparation method and application [P]: ZL 2019 11069505.2. 2020-02-04. [20] 方中达. 植病研究方法[M]. 3 版. 北京: 中国农业出版社, 1998.FANG Z D. Plant pathology research methods[M]. 3rd ed. Beijing: Chinese Agriculture Press, 1998. [21] 克永霞, 李学学, 蔡晓霞, 等. 防治华重楼叶斑病的药剂筛选及田间应用[J]. 中国植保导刊, 2019, 39(10): 61-63. doi: 10.3969/j.issn.1672-6820.2019.10.013KE Y X, LI X X, CAI X X, et al. Selection of pesticide against Paris polyphylla Smith var. chinensis (Franch.) Hara leaf spot and its application in field[J]. China Plant Prot, 2019, 39(10): 61-63. doi: 10.3969/j.issn.1672-6820.2019.10.013 [22] 张忠亮, 李相全, 王欢, 等. 六种有机硅助剂对氟磺胺草醚的增效作用及其增效机理初探[J]. 农药学学报, 2015, 17(1): 115-118. doi: 10.3969/j.issn.1008-7303.2015.01.17ZHANG Z L, LI X Q, WANG H, et al. Preliminary studies on synergism and mechanisms of six organosilicon additives on fomesafen[J]. Chin J Pestic Sci, 2015, 17(1): 115-118. doi: 10.3969/j.issn.1008-7303.2015.01.17 [23] 李彦飞, 冯泽腾, 张小军. 几种农用增效助剂的表面张力及接触角研究[J]. 农药, 2021, 60(3): 172-175.LI Y F, FENG Z T, ZHANG X J. Study on surface tensions and contact angles of several agricultural synergists[J]. Agrochemicals, 2021, 60(3): 172-175. [24] DEKA B, BABU A, SARKAR S, et al. Role of Prosopis juliflora as a botanical synergist in enhancing the efficacy of neem kernel powder against tea red spider mites, Oligonychus coffeae (Acari: Tetranychidae)[J]. SN Appl Sci, 2020, 2(4): 1-9. [25] 袁亮. 植物精油对拟除虫菊酯杀虫剂增效活性研究[D]. 广州: 华南农业大学, 2016.YUAN L. Synergistic effect of plant essential oil on pyrethroid against Culex quinquefasciatus[D]. Guangzhou: South China Agricultural University, 2016. [26] 段辛乐, 张志刚, 高新菊, 等. 二斑叶螨对甲氰菊酯和螺螨酯的抗性选育及增效剂的增效作用[J]. 植物保护, 2011, 37(5): 106-109. doi: 10.3969/j.issn.0529-1542.2011.05.019DUAN X L, ZHANG Z G, GAO X J, et al. Selection of Tetranychus urticae resistant to fenpropathrin and spirodiclofen and the synergistic action of the synergists to the resistant population[J]. Plant Prot, 2011, 37(5): 106-109. doi: 10.3969/j.issn.0529-1542.2011.05.019 [27] 张国生, 汪灿明, 郑瑞琴. 浅谈农药增效剂现状及应用前景[J]. 浙江化工, 2000(4): 24-26.ZHANG G S, WANG C M, ZHENG R Q. Talk about the current situation and application prospects of pesticide synergists[J]. Zhejiang Chem Ind, 2000(4): 24-26. [28] 梁巧兰, 魏列新, 徐秉良, 等. 深绿木霉 T2 蛋白质 TraT2A 诱导处理对接种灰霉菌百合光响应和荧光特性的影响[J]. 园艺学报, 2020, 47(4): 769-778.LIANG Q L, WEI L X, XU B L, et al. Effect of the Trichoderma atroviride T2 proteinaceous TraT2A induction treatment on photoresponsive and fluorescent characteristics of lily leaves inoculated Botrytis cinerea[J]. Acta Horticulturae Sinica, 2020, 47(4): 769-778. [29] 李嘉明, 梁巧兰, 魏列新, 等. 50% TraT2A 水分散粒剂研制及其增效剂筛选[J]. 植物保护学报, 2019, 46(6): 1324-1334.LI J M, LIANG Q L, WEI L X, et al. Development and synergist screening of 50% TraT2A water-dispersible granules[J]. J Plant Prot, 2019, 46(6): 1324-1334. [30] 张娜, 梁巧兰, 李嘉明, 等. 20% TraT2A 诱抗剂水剂制备及效果评价[J]. 农药, 2019, 58(1): 26-29.ZHANG N, LIANG Q L, LI J M, et al. Preparation and quality assessment of TraT2A inducer 20% AS[J]. Agrochemicals, 2019, 58(1): 26-29. -