• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

美国白蛾性信息素的合成研究进展

原超楠 杨宇雄 边庆花 马晓东 王敏 钟江春

原超楠, 杨宇雄, 边庆花, 马晓东, 王敏, 钟江春. 美国白蛾性信息素的合成研究进展[J]. 农药学学报, 2022, 24(4): 659-670. doi: 10.16801/j.issn.1008-7303.2022.0055
引用本文: 原超楠, 杨宇雄, 边庆花, 马晓东, 王敏, 钟江春. 美国白蛾性信息素的合成研究进展[J]. 农药学学报, 2022, 24(4): 659-670. doi: 10.16801/j.issn.1008-7303.2022.0055
YUAN Chaonan, YANG Yuxiong, BIAN Qinghua, MA Xiaodong, WANG Min, ZHONG Jiangchun. Progress on the synthesis of sex pheromones of Hyphantria cunea[J]. Chinese Journal of Pesticide Science, 2022, 24(4): 659-670. doi: 10.16801/j.issn.1008-7303.2022.0055
Citation: YUAN Chaonan, YANG Yuxiong, BIAN Qinghua, MA Xiaodong, WANG Min, ZHONG Jiangchun. Progress on the synthesis of sex pheromones of Hyphantria cunea[J]. Chinese Journal of Pesticide Science, 2022, 24(4): 659-670. doi: 10.16801/j.issn.1008-7303.2022.0055

美国白蛾性信息素的合成研究进展

doi: 10.16801/j.issn.1008-7303.2022.0055
基金项目: 国家重点研发计划 (2017YFD0201404).
详细信息
    作者简介:

    原超楠,S20193101809@cau.edu.cn

    杨宇雄,1419586207@qq.com

    通讯作者:

    王敏,wangmin@cau.edu.cn

    钟江春,zhong@cau.edu.cn

  • 中图分类号: O622.4;TQ459

Progress on the synthesis of sex pheromones of Hyphantria cunea

Funds: the National Key Research and Development Program of China (2017YFD0201404).
  • 摘要: 美国白蛾是世界性检疫害虫,其性信息素包括2个烯醛类化合物与3个环氧烯烃类化合物,可用于诱集美国白蛾,监测种群动态,具有优异的应用前景。本文根据醛的合成方法,阐述了仿生合成法、Weinreb酰胺法、酶催化法、酯的硅氢化等合成烯醛类美国白蛾性信息素的方法;依据关键中间体的连接方式,总结了异硫氰酸铜试剂法、Wittig偶联法、炔基锂试剂取代法、Gilman试剂取代法及烷基环氧重排法等合成环氧烯烃类美国白蛾性信息素的方法。
  • 图  1  美国白蛾性信息素活性成分

    Figure  1.  The active components in the sex pheromone of Hyphantria cunea

    1  仿生合成法合成性信息素1和2[22]

    1.  Synthesis of pheromones 1 and 2 via biomimetic synthesis[22]

    2  Weinreb酰胺法合成性信息素1[26]

    2.  Synthesis of pheromone 1 via Weinreb amide[26]

    3  酶催化法合成性信息素1[30]

    3.  Synthesis of sex pheromone 1 via enzyme catalyzed reaction[30]

    4  铱催化的酯硅氢化法合成性信息素1[33]

    4.  Synthesis of sex pheromone 1 via iridium-catalyzed hydrosilylation of esters[33]

    5  钴催化的酯硅氢化法合成性信息素1[34]

    5.  Synthesis of sex pheromone 1 via cobalt-catalyzed hydrosilylation of esters[34]

    6  异硫氰酸铜试剂法合成性信息素3[37]

    6.  Synthesis of sex pheromone 3 via thiocyanatocuprate[37]

    7  Wittig偶联法合成性信息素3[41]

    7.  Synthesis of sex pheromone 3 via Wittig coupling[41]

    8  炔基锂试剂取代反应法合成性信息素3与4[45]

    8.  Synthesis of sex pheromones 3 and 4 via the reaction of alkynyl lithium reagent[45]

    9  Gilman试剂取代法合成性信息素3[48]

    9.  Synthesis of sex pheromone 3 via Gilman reagent[48]

    10  Gilman试剂取代法合成性信息素4与5[49]

    10.  Synthesis of sex pheromone 4 and 5 via Gilman reagent[49]

    11  Gilman试剂取代法与酶催化不对称乙酰化合成性信息素3[50]

    11.  Synthesis of sex pheromone 3 via Gilman reagent and lipase-catalyzed asymmetric acetylation[50]

    12  Gilman试剂取代法与酶催化不对称乙酰化合成性信息素4[50]

    12.  Synthesis of sex pheromone 4 via Gilman reagent and lipase-catalyzed asymmetric acetylation[50]

    13  Yadav烷基环氧重排法合成性信息素4[54]

    13.  Synthesis of sex pheromone 4 via alkylative epoxide rearrangement by Yadav[54]

    14  Wang与Shi烷基环氧重排法合成性信息素3[56]

    14.  Synthesis of sex pheromone 3 via alkyl epoxide rearrangement by Wang and Shi[56]

    15  Zhang烷基环氧重排法合成性信息素4[57]

    15.  Synthesis of sex pheromone 4 via alkylative epoxide rearrangement by Zhang[57]

    16  Zhong烷基环氧重排法合成性信息素3[59]

    16.  Synthesis of sex pheromone 3 via alkylative epoxide rearrangement by Zhong[59]

  • [1] 孙守慧, 南俊科, 杨丽元, 等. 美国白蛾天敌研究进展[J]. 环境昆虫学报, 2021, 43(6): 1331-1347. doi: 10.3969/j.issn.1674-0858.2021.06.01

    SUN S H, NAN J K, YANG L Y, et al. Research progress on natural enemies of the Hyphantria cunea (Drury)[J]. J Environ Entomol, 2021, 43(6): 1331-1347. doi: 10.3969/j.issn.1674-0858.2021.06.01
    [2] ZHANG X Q, MANG D Z, LIAO H, et al. Functional disparity of three pheromone-binding proteins to different sex pheromone components in Hyphantria cunea (Drury)[J]. J Agric Food Chem, 2021, 69(1): 55-66. doi: 10.1021/acs.jafc.0c04476
    [3] 吴强民, 吴建军, 王卫东, 等. 美国白蛾发生范围及其发展趋势与防治方法探讨[J]. 农业灾害研究, 2022, 12(3): 24-26.

    WU Q M, WU J J, WANG W D, et al. Discussion on the occurrence range, development trend and control methods of American white moth,[J]. J Agric Catastrophology, 2022, 12(3): 24-26.
    [4] 韩明海, 敖宝成, 韩凤英, 等. 释放寄生性天敌昆虫对美国白蛾种群数量的调控作用研究[J]. 吉林林业科技, 2022, 51(1): 4-6. doi: 10.16115/j.cnki.issn.1005-7129.2022.01.002

    HAN M H, AO B C, HAN F Y, et al. Study on the regulative effect of releasing parasitic natural enemy insects on the population of Hyphantria cunea[J]. J Jilin For Sci Technol, 2022, 51(1): 4-6. doi: 10.16115/j.cnki.issn.1005-7129.2022.01.002
    [5] JIANG D, WU S, TAN M T, et al. The high adaptability of Hyphantria cunea larvae to cinnamic acid involves in detoxification, antioxidation and gut microbiota response[J]. Pestic Biochem Physiol, 2021, 174: 104805. doi: 10.1016/j.pestbp.2021.104805
    [6] 贾红梅, 张宏杰, 张旭. 美国白蛾发生危害特点及综合防控措施[J]. 果树资源学报, 2022, 3(2): 60-62.

    JIA H M, ZHANG H J, ZHANG X. Occurrence characteristic and comprehensive countermeasure of Hyphantria cunea[J]. J Fruit Resour, 2022, 3(2): 60-62.
    [7] 张杰, 杨苗, 白嘉伟, 等. 雄安新区千年秀林美国白蛾危害寄主种类及危害情况调查[J]. 林业与生态科学, 2022, 37(1): 107-114.

    ZHANG J, YANG M, BAI J W, et al. Investigation on the host species and damages of Hyphantria cunea in the Xiongan New Area[J]. For Ecol Sci, 2022, 37(1): 107-114.
    [8] 耿薏舒, 赵旭东, 韩阳阳, 等. 寄主转换对美国白蛾幼虫生长发育和消化酶活性的影响[J]. 昆虫学报, 2022, 65(3): 312-321.

    GENG Y S, ZHAO X D, HAN Y Y, et al. Effects of host switch on the development and digestive enzyme activities of Hyphantria cunea (Lepidoptera: Erebidae) larvae[J]. Acta Entomol Sin, 2022, 65(3): 312-321.
    [9] HILL A S, KOVALEV B G, NIKOLAEVA L N, et al. Sex pheromone of the fall webworm moth, Hyphantria cunea[J]. J Chem Ecol, 1982, 8(2): 383-396. doi: 10.1007/BF00987787
    [10] ZHANG Q H, SCHLYTER F, CHU D, et al. Female calling behaviour and response of males to synthetic pheromone and virgin females in spring and summer generations of Hyphantria cunea (Lep., Arctiidae) (Drury) in Northeastern China [J]. J Appl Entomol 1996, 120(8): 467-476.
    [11] ZHANG Q H, SCHLYTER F. High recaptures and long sampling range of pheromone traps for fall web worm moth Hyphantria cunea (Lepidoptera: Arctiidae) males[J]. J Chem Ecol, 1996, 22(10): 1783-1796. doi: 10.1007/BF02028504
    [12] 万霞, 邓建宇, 王义平. 不同诱捕器和不同波段LED灯对美国白蛾的引诱效果[J]. 植物保护, 2021, 47(1): 103-107. doi: 10.16688/j.zwbh.2019553

    WAN X, DENG J Y, WANG Y P. Effects of different trap types and fluorescent tubes at different bands on capture of Hyphantria cunea (Drury)[J]. Plant Prot, 2021, 47(1): 103-107. doi: 10.16688/j.zwbh.2019553
    [13] ZHANG Q H, SCHLYTER F, CHU D, et al. Diurnal and seasonal flight activity of males and population dynamics of fall webworm moth, Hyphantria cunea, (Drury) (Lep., Arctiidae) monitored by pheromone traps[J]. J Appl Entomol, 1998, 122(9-10): 523-532.
    [14] 刘晓砚, 沈学丰, 白雪婧, 等. 美国白蛾性信息素在园林上的应用[J]. 中国森林病虫, 2001, 20(S1): 51.

    LIU X Y, SHEN X F, BAI X J, et al. Application of sex pheromone of Hyphantria cunea in gardens[J]. For Pest Dis, 2001, 20(S1): 51.
    [15] EL-SAYED A M, GIBB A R, SUCKLING D M. Chemistry of the sex pheromone gland of the fall webworm, Hyphantria cunea, discovered in New Zealand[J]. N Z Plant Prot, 2005, 58: 31-36.
    [16] TÓTH M, BUSER H R, PEÑA A, et al. Identification of (3Z, 6Z)-1,3,6-9,10-epoxyheneicosatriene and (3Z, 6Z)-1,3,6-9,10-epoxyeicosatriene in the sex pheromone of Hyphantria cunea[J]. Tetrahedron Lett, 1989, 30(26): 3405-3408. doi: 10.1016/S0040-4039(00)99256-6
    [17] 苏茂文, 方宇凌, 陶万强, 等. 入侵害虫美国白蛾性信息素组分的鉴定和野外活性评估[J]. 科学通报, 2008, 53(2): 191-196. doi: 10.3321/j.issn:0023-074X.2008.02.009

    SU M W, FANG Y L, TAO W Q, et al. Identification and field efficacy of sex pheromone of invasive Hyphantria cunea[J]. Chin Sci Bull, 2008, 53(2): 191-196. doi: 10.3321/j.issn:0023-074X.2008.02.009
    [18] BESTMANN H J, ROTH K, MICHAELIS K, et al. Pheromones. 57. Synthesis of polyene pheromones of Lepidoptera and structural analogues. Acetylenic synthesis, Wittig olefination, and Kolbe electrolysis[J]. Liebigs Ann Chem, 1987(5): 417-422.
    [19] BAO R Y, ZHANG H Y, TANG Y F. Biomimetic synthesis of natural products: a journey to learn, to mimic, and to be better[J]. Acc Chem Res, 2021, 54(19): 3720-3733. doi: 10.1021/acs.accounts.1c00459
    [20] WANG Y, TIAN H L, GUI J H. Gram-scale synthesis of bufospirostenin A by a biomimetic skeletal rearrangement approach[J]. J Am Chem Soc, 2021, 143(46): 19576-19586. doi: 10.1021/jacs.1c10067
    [21] KIYOTA R, ARAKAWA M, YAMAKAWA R, et al. Biosynthetic pathways of the sex pheromone components and substrate selectivity of the oxidation enzymes working in pheromone glands of the fall webworm, Hyphantria cunea[J]. Insect Biochem Mol Biol, 2011, 41(6): 362-369. doi: 10.1016/j.ibmb.2011.02.004
    [22] 严赞开, 何佶, 张钟宁. 美国白蛾性信息素(9Z, 12Z)-十八碳二烯醛及(9Z, 12Z, 15Z)-十八碳三烯醛的合成[J]. 农药学学报, 2002, 4(2): 85-88. doi: 10.3321/j.issn:1008-7303.2002.02.015

    YAN Z K, HE J, ZHANG Z N. Synthesis of (9Z, 12Z)-octadecadienal and (9Z, 12Z, 15Z)-octadecatrienal, two sex pheromone components of Hyphantria cunea (Drury)[J]. Chin J Pestic Sci, 2002, 4(2): 85-88. doi: 10.3321/j.issn:1008-7303.2002.02.015
    [23] NAHM S, WEINREB S M. N-methoxy-N-methylamides as effective acylating agents[J]. Tetrahedron Lett, 1981, 22(39): 3815-3818. doi: 10.1016/S0040-4039(01)91316-4
    [24] 赵蔚, 刘伟. Weinreb酰胺在有机合成中的应用进展[J]. 有机化学, 2015, 35(1): 55-69. doi: 10.6023/cjoc201407032

    ZHAO W, LIU W. Progress of Weinreb amides in organic synthesis[J]. Chin J Org Chem, 2015, 35(1): 55-69. doi: 10.6023/cjoc201407032
    [25] 康娟, 黄丹凤, 王克虎, 等. α-三氟甲基-α-羟基Weinreb酰胺的合成研究[J]. 有机化学, 2017, 37(1): 103-109. doi: 10.6023/cjoc201606034

    KANG J, HUANG D F, WANG K H, et al. Synthesis of α-trifluoromethyl-α-hydroxy Weinreb amides[J]. Chin J Org Chem, 2017, 37(1): 103-109. doi: 10.6023/cjoc201606034
    [26] KANGANI C O, KELLEY D E, DAY B W. One-pot synthesis of aldehydes or ketones from carboxylic acids via in situ generation of Weinreb amides using the Deoxo-Fluor reagent[J]. Tetrahedron Lett, 2006, 47(35): 6289-6292. doi: 10.1016/j.tetlet.2006.06.121
    [27] WOHLGEMUTH R. Biocatalysis: key enabling tools from biocatalytic one-step and multi-step reactions to biocatalytic total synthesis[J]. N Biotechnol, 2021, 60: 113-123. doi: 10.1016/j.nbt.2020.08.006
    [28] 王盼盼. 于洪巍. 酶催化在维生素及其衍生物制备中的应用 [J/OL]. 合成生物学, 2022[2022-01-10]. https://kns.cnki.net/kcms/detail/10.1687.Q.20220516.1443.016.

    WANG P P, YU H W, Application of enzyme catalysis in the preparation of vitamins and their derivatives[J/OL]. Syn Bio J, 2022[2022-01-10]. https://kns.cnki.net/kcms/detail/10.1687.Q.20220516.1443.016.
    [29] NOTHLING M D, XIAO Z Y, BHASKARAN A, et al. Synthetic catalysts inspired by hydrolytic enzymes[J]. ACS Catal, 2019, 9(1): 168-187. doi: 10.1021/acscatal.8b03326
    [30] DUAN Y T, YAO P Y, DU Y C, et al. Synthesis of α, β-unsaturated esters via a chemo-enzymatic chain elongation approach by combining carboxylic acid reduction and Wittig reaction[J]. Beilstein J Org Chem, 2015, 11: 2245-2251. doi: 10.3762/bjoc.11.243
    [31] HE Z Y, WANG Z J, RU J X, et al. A strategy for accessing aldehydes via palladium-catalyzed C-O/C-N bond cleavage in the presence of hydrosilanes[J]. Adv Synth Catal, 2020, 362(24): 5794-5800. doi: 10.1002/adsc.202000794
    [32] WEI D, BUHAIBEH R, CANAC Y, et al. Manganese and rhenium-catalyzed selective reduction of esters to aldehydes with hydrosilanes[J]. Chem Commun, 2020, 56(78): 11617-11620. doi: 10.1039/D0CC03580G
    [33] CORRE Y, RYSAK V, CAPET F, et al. Selective hydrosilylation of esters to aldehydes catalysed by iridium(III) metallacycles through trapping of transient silyl cations[J]. Chem-Eur J, 2016, 22(39): 14036-14041. doi: 10.1002/chem.201602867
    [34] RYSAK V, DESCAMPS-MANDINE A, SIMON P, et al. Selective ligand-free cobalt-catalysed reduction of esters to aldehydes or alcohols[J]. Catal Sci Technol, 2018, 8(14): 3504-3512. doi: 10.1039/C8CY00728D
    [35] FUCHIBE K, TAKAYAMA R, AONO T, et al. Regioselective syntheses of fluorinated cyclopentanone derivatives: Ring construction strategy using transition-metal-difluorocarbene complexes and free difluorocarbene[J]. Synthesis, 2018, 50(3): 514-528. doi: 10.1055/s-0036-1591728
    [36] ICHIKAWA J, FUJIWARA M, MIYAZAKI S, et al. Regioselective nucleophilic additions to cross-conjugated dienone system bearing β-fluorine: a versatile approach to highly substituted 2-cyclopentenones[J]. Org Lett, 2001, 3(15): 2345-2348. doi: 10.1021/ol0161458
    [37] POUGNY J R, ROLLIN P. Synthesis from D-xylose of the salt marsh caterpillar moth pheromone (3Z,6Z,9S,10R)-epoxyheneicosadiene and its (3Z,6E)-stereoisomer[J]. Tetrahedron Lett, 1987, 28(26): 2977-2978. doi: 10.1016/S0040-4039(00)96260-9
    [38] ROLLIN P, POUGNY J R. Synthesis of (6Z)-cis-9S,10R-epoxyheneicosene, a component of the ruby tiger moth pheromone[J]. Tetrahedron, 1986, 42(13): 3479-3490. doi: 10.1016/S0040-4020(01)87315-4
    [39] CHAVAN S P, KALBHOR D B, GONNADE R G. Divergent approach to the synthesis of (−)-balanol heterocycle and cis-3-hydroxypipecolic acid based on chiral 2-aminoalkanol equivalent[J]. Tetrahedron, 2021, 80: 131773. doi: 10.1016/j.tet.2020.131773
    [40] ZHANG K, LU L Q, XIAO W J. Recent advances in the catalytic asymmetric alkylation of stabilized phosphorous ylides[J]. Chem Commun, 2019, 55(60): 8716-8721. doi: 10.1039/C9CC02831E
    [41] 林国强, 曾春民. (3Z,6Z)-9S,10R-环氧-二十一碳双烯-美洲白蛾性信息素的合成[J]. 化学学报, 1993, 51(2): 197-201.

    LING G Q, ZENG C M. (3Z,6Z)-9S,10R-epoxy-heneicosadiene- the sex pheromone of American white moth[J]. Acta Chimica Sin, 1993, 51(2): 197-201.
    [42] 林国强, 曾春民. 双乙烯基甲醇的不对称环氧化合成午毒蛾性信息素[J]. 化学学报, 1992, 50(1): 78-84.

    LING G Q, ZENG C M. Synthesis of sex pheromone of gypsy moth via Sharpless epoxidation of divinylcarbinol[J]. Acta Chimica Sin, 1992, 50(1): 78-84.
    [43] DZHEMILEVA L U, D'YAKONOV V A, MAKAROV A A, et al. Total synthesis of natural lembehyne C and investigation of its cytotoxic properties[J]. J Nat Prod, 2020, 83(8): 2399-2409. doi: 10.1021/acs.jnatprod.0c00261
    [44] BELLO J E, MILLAR J G. Efficient asymmetric synthesis of long chain methyl-branched hydrocarbons, components of the contact sex pheromone of females of the cerambycid beetle, Neoclytus acuminatus acuminatus[J]. Tetrahedron Asymmetry, 2013, 24(13-14): 822-826. doi: 10.1016/j.tetasy.2013.05.021
    [45] DU Y, ZHENG J F, WANG Z G, et al. A concise, protection-free and divergent approach for the enantioselective syntheses of two pheromonal epoxide components of the fall webworm moth and other species[J]. J Org Chem, 2010, 75(13): 4619-4622. doi: 10.1021/jo1007042
    [46] HAYAKAWA H, ASHIZAWA H, TANAKA H, et al. Introduction of an alkyl group into the sugar portion of uracilnucleosides by the use of Gilman reagents[J]. Chem Pharm Bull, 1990, 38(2): 355-360. doi: 10.1248/cpb.38.355
    [47] MORI S, NAKAMURA E, MOROKUMA K. Mechanism of SN2 alkylation reactions of lithium organocuprate clusters with alkyl halides and epoxides. Solvent effects, BF3 effects, and trans-diaxial epoxide opening[J]. J Am Chem Soc, 2000, 122(30): 7294-7307. doi: 10.1021/ja0002060
    [48] MORI K, EBATA T. Syntheses of optically active pheromones with an epoxy ring, (+)-disparlure and both the enantiomers of (3Z,6Z)-cis-9,10-epoxy-3,6-heneicosadiene[J]. Tetrahedron, 1986, 42(13): 3471-3478. doi: 10.1016/S0040-4020(01)87314-2
    [49] MORI K, TAKEUCHI T. Pheromone synthesis. CXIII. Synthesis of the enantiomers of (3Z,6Z)-cis-9,10-epoxy-1,3,6-henicosatriene and (3Z,6Z)-cis-9, 10-epoxy-1,3,6-icosatriene, the new pheromone components of Hyphantria cunea[J]. Liebigs Ann Chem, 1989(5): 453-457.
    [50] NAKANISHI A, MORI K. New synthesis of the (3Z,6Z,9S, 10R)-isomers of 9,10-epoxy-3,6-henicosadiene and 9,10-epoxy-1,3,6-henicosatriene, pheromone components of the female fall webworm moth, Hyphantria cunea[J]. Biosci Biotechnol Biochem, 2005, 69(5): 1007-1013. doi: 10.1271/bbb.69.1007
    [51] BELL T W, CIACCIO J A. Alkylative epoxide rearrangement. A stereospecific approach to chiral epoxide pheromones[J]. J Org Chem, 1993, 58(19): 5153-5162. doi: 10.1021/jo00071a026
    [52] MAGEE D I, SILK P J, WU J P, et al. Synthesis of chiral alkenyl epoxides: the sex pheromone of the elm spanworm Ennomus subsignaria (Hübner) (Lepidoptera: Geometridae)[J]. Tetrahedron, 2011, 67(29): 5329-5338. doi: 10.1016/j.tet.2011.05.015
    [53] BELL T W, CLACCIO J A. Alkylative epoxide rearrangement. Application to stereoselective synthesis of chiral pheromone epoxides[J]. Tetrahedron Lett, 1988, 29(8): 865-868. doi: 10.1016/S0040-4039(00)82468-5
    [54] YADAV J S, VALLI M Y, PRASAD A R. Total synthesis of enantiomers of (3Z,6Z)-cis-9,10-epoxy-1,3,6-henicosatriene: the pheromonal component of Diacrisia obliqua[J]. Tetrahedron, 1998, 54(26): 7551-7562. doi: 10.1016/S0040-4020(98)00389-5
    [55] YADAV J S, VALLI M Y, PRASAD A R. Isolation, identification, synthesis, and bioefficacy of female Diacrisia obliqua (Arctiidae) sex pheromone blend. An Indian agricultural pest[J]. Pure Appl Chem, 2001, 73(7): 1157-1162. doi: 10.1351/pac200173071157
    [56] ZHANG Z B, WANG Z M, WANG Y X, et al. A facile synthetic method for chiral 1,2-epoxides and the total synthesis of chiral pheromone epoxides[J]. Tetrahedron Asymmetry, 1999, 10(5): 837-840. doi: 10.1016/S0957-4166(99)00082-8
    [57] CHE C, ZHANG Z N. Concise total synthesis of (3Z,6Z,9S,10R)-9,10-epoxy-1,3,6-heneicosatriene, sex pheromone component of Hyphantria cunea[J]. Tetrahedron, 2005, 61(8): 2187-2193. doi: 10.1016/j.tet.2004.12.060
    [58] CHE C, ZHANG Z N. A facile synthetic method for (3Z,6Z,9S,10R)-9,10-epoxy-3,6-heneicosadiene, sex pheromone component of Hyphantria cunea (Drug)[J]. Chin Chem Lett, 2005, 16(4): 468-470.
    [59] 袁谷城, 刘嘉威, 于士航, 等. 美国白蛾性信息素(3Z,6Z,9S,10R)-9,10-环氧-3,6-二十一碳二烯的不对称合成[J]. 有机化学, 2021, 41(11): 4437-4443. doi: 10.6023/cjoc202107005

    YUAN G C, LIU J W, YU S H, et al. Asymmetric synthesis of (3Z,6Z,9S,10R)-9,10-epoxy-3,6-heneicosadiene, sex pheromone component of Hyphantria cunea[J]. Chin J Org Chem, 2021, 41(11): 4437-4443. doi: 10.6023/cjoc202107005
    [60] 王敏, 袁谷城, 王雪扬, 等. 一种合成(3Z,6Z,9S,10R)-9,10-环氧-3, 6-二十一碳二烯的方法: CN202110182728.0[P]. 2021-02-08.

    WANG M, YUAN G C, WANG X Y, et al. Synthesis of (3Z, 6Z, 9S,10R)-9,10-epoxy-3,6-heneicosadiene: CN202110182728.0[P]. 2021-02-08.
    [61] 邱立新, 卢修亮, 林晓, 等. 我国美国白蛾防控历程与新时期策略探讨 [J/OL]. 中国森林病虫, 2022[2022-01-10]. https://doi.org/10.19688/j.cnki.issn1671-0886.20220041.

    QIU L X, LU X L, LIN X, et al. Discussion on the prevention and control process of Hyphantria cunea in China and strategies in the new period. The occurrence, damage and prevention of Hyphantria cunea [J/OL]. For Pest Dis, 2022[2022-01-10]. https://doi.org/10.19688/j.cnki.issn1671-0886.20220041.
    [62] 雷启阳, 江雅琴, 吴华龙, 等. 硫虫酰胺对美国白蛾的杀虫活性和田间防效[J]. 农药, 2021, 60(1): 63-65. doi: 10.16820/j.cnki.1006-0413.2021.01.016

    LEI Q Y, JIANG Y Q, WU H L, et al. Bioactivity and field efficacy of HY366 against Hyphantria cunea[J]. Agrochemicals, 2021, 60(1): 63-65. doi: 10.16820/j.cnki.1006-0413.2021.01.016
  • 加载中
图(17)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  10
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-16
  • 录用日期:  2022-03-20
  • 网络出版日期:  2022-06-10
  • 刊出日期:  2022-08-03

目录

    /

    返回文章
    返回