Synthesis and antifungal activity of coumarin oxime esters
-
摘要: 为发现具有高抑菌活性的肟酯类化合物, 结合本课题组前期研究, 设计并合成了18个新型香豆素肟酯衍生物, 并对抑菌活性及构效关系进行了研究。离体生物活性测定结果表明, 目标化合物在50 μg/mL下对番茄灰霉病菌、苹果树腐烂病菌和水稻纹枯病菌均表现出一定的抑制活性, 其中化合物 4n 对番茄灰霉病菌和水稻纹枯病菌的EC50值分别为4.44 μg/mL和3.65 μg/mL,表现出比香豆素和肟菌酯更优或相似的活性。Abstract: In order to discover high antifungal activity oxime esters compound, based on our previous studies, 18 novel coumarin oxime esters were designed and synthesized. The antifungal activity was evaluated and the structure-activity relationship was analyzed. The in vitro bioassay results showed that the target compounds showed antifungal activities against Botrytis cinerea, Valsa mali and Rhizoctonia solani. Especially, compound 4n displayed excellent activity against B. cinerea (EC50 = 4.44 μg/mL) and R. solani (EC50 = 3.65 μg/mL), which are better than or similar to those of coumarin and trifloxystrobin.
-
Key words:
- coumarin /
- sulphonate /
- oxime ester /
- antifungal activity /
- Rhizoctonia solani
-
表 1 目标化合物4a~4r在50 μg/mL下离体抑菌活性
Table 1. Antifungal activities in vitro of target compounds 4a-4r at 50 μg/mL
化合物
Compd.取代基
R抑制率
Inhibition rate/%苹果树腐烂
病菌
V. mali番茄灰霉
病菌
B. cinerea水稻纹枯
病菌
R. solani4a 2-OMePh 37.4 25.4 35.6 4b 3-OMePh 0.4 2.7 23.5 4c 4-OMePh 24.5 8.1 29.1 4d 2-ClPh 8.9 19.2 26.1 4e 3-ClPh 4.7 1.5 1.6 4f 4-ClPh 3.5 16.5 2.6 4g 2-MePh 21.0 13.5 32.0 4h 4-MePh 16.3 16.9 16.3 4i 2-CF3Ph 55.6 50.0 36.9 4j 3-CF3Ph 9.3 13.5 3.6 4k 2-FPh 21.4 13.8 30.7 4l 2-BrPh 20.6 13.8 22.9 4m 3-BrPh 0.4 10.4 1.6 4n Furan-2-yl 43.2 86.5 96.3 4o t-Bu 22.2 29.6 96.9 4p n-Bu-4-Cl 40.9 34.1 66.2 4q n-Pr 43.5 63.9 82.6 4r Thiophen-2-yl 43.3 57.9 65.5 香豆素
coumarin— 39.1 45.2 76.3 肟菌酯
trifloxystrobin— 97.4 77.7 89.3 表 2 部分目标化合物对两种病原菌的EC50值
Table 2. EC50 values of some target compounds against two pathogenic fungi
病原菌
Pathogenic fungi化合物
Compound取代基
R回归方程
Regression equation决定系数
R2EC50/(μg/mL) 95% 置信限
95% CL/(μg/mL)番茄灰霉病菌
B. cinerea4n Furan-2-yl y = 0.889x − 0.576 0.957 4.44 3.10~5.90 肟菌酯
trifloxystrobin— y = 0.975x − 0.955 0.978 9.54 7.42~12.33 水稻纹枯病菌
R. solani4n Furan-2-yl y = 1.270x − 0.714 0.935 3.65 1.83~5.65 4o t-Bu y = 1.221x − 0.657 0.923 3.45 2.59~4.34 4q n-Pr y = 1.202x − 1.230 0.962 10.55 8.59~13.08 香豆素
coumarin— y = 1.056x − 1.202 0.981 13.75 10.89~17.91 肟菌酯
trifloxystrobin— y = 0.959x − 0.634 0.939 4.58 3.31~5.56 -
[1] SPARKS T C, HAHN D R, GARIZI N V. Natural products, their derivatives, mimics and synthetic equivalents: role in agrochemical discovery[J]. Pest Manag Sci, 2017, 73(4): 700-715. doi: 10.1002/ps.4458 [2] VENUGOPALA K N, RASHMI V, ODHAV B. Review on natural coumarin lead compounds for their pharmacological activity[J]. Biomed Res Int, 2013: 963248. [3] HUANG J, LIANG P, XU J, et al. Qualitative and quantitative determination of coumarin using surface-enhanced Raman spectroscopy coupled with intelligent multivariate analysis[J]. RSC Adv, 2017, 7(77): 49097-49101. doi: 10.1039/C7RA09059E [4] VERHOEF T I, REDEKOP W K, DALY A K, et al. Pharmacogenetic-guided dosing of coumarin anticoagulants: algorithms for warfarin, acenocoumarol and phenprocoumon[J]. Brit J Clin Pharmaco, 2014, 77(4): 626-641. doi: 10.1111/bcp.12220 [5] EMAMI S, DADASHPOUR S. Current developments of coumarin-based anti-cancer agents in medicinal chemistry[J]. Eur J Med Chem, 2015, 102: 611-630. doi: 10.1016/j.ejmech.2015.08.033 [6] FYLAKTAKIDOU K C, HADJIPAVLOU-LITINA D J, LITINAS K E, et al. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities[J]. Curr Pharm Design, 2004, 10(30): 3813-3833. doi: 10.2174/1381612043382710 [7] 杜康, 陈睿嘉, 李忠, 等. 香豆素型呋虫胺光控化合物的设计、合成、光学特性及杀虫活性[J]. 农药学学报, 2022, 24(1): 31-38. doi: 10.16801/j.issn.1008-7303.2021.0146DU K, CHEN R J, LI Z, et al. Design, synthesis, photophysical properties and insecticidal activities of coumarin compound for the photocontrolled release of dinotefuran[J]. Chin J Pestic Sci, 2022, 24(1): 31-38. doi: 10.16801/j.issn.1008-7303.2021.0146 [8] 刘瑾林, 周红, 郭富友, 等. 香豆素类化合物的农药活性及东莨菪内酯杀螨作用机理研究进展[J]. 农药学学报, 2019, 21(5-6): 692-708.LIU J L, ZHOU H, GUO F Y, et al. Research advances in pesticidal activities of coumarin derivatives and acaricidal mechanism of scopoletin[J]. Chin J Pestic Sci, 2019, 21(5-6): 692-708. [9] 丁建芬, 刘莉, 夏梅, 等. 新型香豆素衍生物的设计、合成及除草活性研究[J]. 合成化学, 2021, 29(7): 577-583.DING J F, LIU L, XIA M, et al. Design, synthesis and herbicidal activity of novel coumarin derivatives[J]. Chin J Synth Chem, 2021, 29(7): 577-583. [10] 马伟虎, 程红刚, 杨璟, 等. 香豆素对灰葡萄孢霉菌抑菌作用机理初探[J]. 农药学学报, 2020, 22(5): 775-781.MA W H, CHENG H G, YANG J, et al. Preliminary study on the antifungal mechanism of coumarin on Botrytis cinerea[J]. Chin J Pestic Sci, 2020, 22(5): 775-781. [11] 石志琦, 沈寿国, 徐朗莱, 等. 蛇床子素对植物病原真菌抑制机制的初步研究[J]. 农药学学报, 2004, 6(4): 28-32. doi: 10.3321/j.issn:1008-7303.2004.04.006SHI Z Q, SHEN S G, XU L L, et al. Inhibition mechanism of osthole to plant fungus pathogens[J]. Chin J Pestic Sci, 2004, 6(4): 28-32. doi: 10.3321/j.issn:1008-7303.2004.04.006 [12] 关爱莹, 刘长令, 李志念, 等. 杀菌剂丁香菌酯的创制经纬[J]. 农药, 2011, 50(2): 90-92. doi: 10.3969/j.issn.1006-0413.2011.02.004GUAN A Y, LIU C L, LI Z N, et al. The discovery of fungicide coumoxystrobin[J]. Agrochemicals, 2011, 50(2): 90-92. doi: 10.3969/j.issn.1006-0413.2011.02.004 [13] 张学良, 魏艳, 韦能春, 等. 10种N-取代氨基香豆素的合成及生物活性[J]. 农药学学报, 2013, 15(1): 37-42. doi: 10.3969/j.issn.1008-7303.2013.01.05ZHANG X L, WEI Y, WEI N C, et al. Synthesis and bioactivity of 10 N-substituted amino coumarins[J]. Chin J Pestic Sci, 2013, 15(1): 37-42. doi: 10.3969/j.issn.1008-7303.2013.01.05 [14] 昝宁宁, 万福贤, 王士春, 等. 含吡啶环的3-苯基-1-丙酮肟醚的合成及生物活性[J]. 有机化学, 2017, 37: 1537-1541. doi: 10.6023/cjoc201701009ZAN N N, WAN F X, WANG S C, et al. Synthesis and biological activity of novel 3-phenylpropan-1-one oxime ethers containing pyridine moiety[J]. Chin J Org Chem, 2017, 37: 1537-1541. doi: 10.6023/cjoc201701009 [15] 沈安泽, 胡恩畅, 刘函如, 等. 含肟酯的吡唑衍生物的合成及其抑菌活性[J]. 农药学学报, 2021, 23(1): 69-75. doi: 10.16801/j.issn.1008-7303.2021.0005SHEN A Z, HU E C, LIU H R, et al. Synthesis and antifungal activities of pyrazole derivatives containing oxime esters[J]. Chin J Pestic Sci, 2021, 23(1): 69-75. doi: 10.16801/j.issn.1008-7303.2021.0005 [16] 张兴甲, 魏志敏, 王宇佳, 等. 3-二氟甲基-1-甲基吡唑-4-羧酸肟酯衍生物的合成及抑菌活性[J]. 农药学学报, 2022, 24(1): 59-65. doi: 10.16801/j.issn.1008-7303.2021.0140ZHANG X J, WEI Z M, WANG Y J, et al. Synthesis and antifungal activity of 3-(difluoromethyl)-1-methyl pyrazole-4-carboxylic oxime esters[J]. Chin J Pestic Sci, 2022, 24(1): 59-65. doi: 10.16801/j.issn.1008-7303.2021.0140 [17] WANG Y J, MU Y L, HU X T, et al. Indole/tetrahydroquinoline as renewable natural resource-inspired scaffolds in the devising and preparation of potential fungicide candidates[J]. J Agric Food Chem, 2022, 70(15): 4582-4590. doi: 10.1021/acs.jafc.1c07879 [18] LEE S K, CHOI M G, CHANG S-K. Signaling of chloramine: a fluorescent probe for trichloroisocyanuric acid based on deoximation of a coumarin oxime[J]. Tetrahedron Lett, 2014, 55(51): 7047-7050. doi: 10.1016/j.tetlet.2014.10.132 [19] HU Y G, GAO Y Q, WANG Y J, et al. Non-food bioactive products: diversified invention of 1,2,4-oxadiazole-containing amide derivatives for novel fungicidal candidate discovery[J]. Ind Crop Prod, 2022, 184: 115087. doi: 10.1016/j.indcrop.2022.115087 [20] 陈年春. 农药生物测定技术[M]. 北京: 北京农业大学出版社, 1991: 161-162.Chen N C. Bioassay of Pesticides[M]. Beijing: Beijing Agricultural University Press, 1991: 161-162. [21] CARTA F, VULLO D, MARESCA A, et al. New chemotypes acting as isozyme-selective carbonic anhydrase inhibitors with low affinity for the offtarget cytosolic isoform II[J]. Bioorg Med Chem Lett, 2012, 22(6): 2182-2185. doi: 10.1016/j.bmcl.2012.01.129 -