二硫代氨基甲酸盐类(DTCs)杀菌剂残留分析方法综述

马婧玮1, 潘灿平2, 张 玲1, 张军锋*1

(1. 河南省农业科学院 农业质量标准与检测技术研究中心, 郑州 450002; 2. 中国农业大学 理学院, 北京 100193)

摘 要：综述了二硫代氨基甲酸盐类(DTCs)杀菌剂及其代谢物的残留分析研究现状,并对当前主要的残留分析方法如分光光度法、气相色谱法、液相色谱法及液相色谱-质谱联用技术和毛细管电泳法进行了较为详细的比较、分析, 对 DTCs 类杀菌剂残留分析方法的未来发展进行了展望。衍生化液相色谱法虽然操作步骤较繁琐、耗时长，但结果稳定可靠，能区分不同结构类型，是目前重点且被广泛采用的方法，而同时测定 DTCs 类杀菌剂母体及其代谢物的串联质谱方法将是今后进一步研究的热点课题。

关键词：二硫代氨基甲酸盐(DTCs); 杀菌剂; 残留分析; 检测

DOI:10.3969/j.issn.1008-7303.2010.01.03
中图分类号:S482.2;O656.3 文献标志码:A 文章编号:1008-7303(2010)01-0022-09

Research progress on residue analysis of dithiocarbamates (DTCs) fungicide

MA Jing-wei1, PAN Can-ping2, ZHANG Ling1, ZHANG Jun-feng*1

(1. Center of Quality Standards & Testing Technology for Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China;
2. College of Sciences, China Agricultural University, Beijing 100193, China)

Abstract: The analysis methods of dithiocarbamates (DTCs) fungicide and their metabolites, including detailed discussion of individual analysis methods, such as spectrophotometry, gas chromatography, liquid chromatography, liquid chromatography-mass spectrometry and micellar electrokinetic chromatography, etc. were reviewed. The prospects of application on the residue analysis of DTCs were predicted. Currently, high performance liquid chromatography (HPLC) determination with derivation is becoming the most applicable method, with its time-consuming, in several steps but good precision and reliability, plus with resolution for 3 different types of DTCs. It’s expected that the simultaneous determination of dithiocarbamate fungicides matrix and their metabolites with tandem mass spectroscopy would be an active hotspot in this field.

Key words: dithiocarbamates (DTCs); fungicide; residues analysis; determination
二硫代氨基甲酸盐类（Dithiocarbamates，简称 DTCs）化合物因具有很强的金属螯合键而可用作酶抑制剂，常以重金属盐的形式存在。在农业生产中作为一类重要的杀菌剂，具有高效、低毒、对人畜、植物安全以及防治植物病害广谱等特点，可防治疫病、叶斑病、霜霉病、炭疽病等多种真菌性植物病害。该类药剂不易诱发病原物抗药性，应用十分广泛。按其化学结构可分为二甲基二硫代氨基甲酸盐（Dimethyldithiocarbamates，简称 DMDs）、乙撑二硫代氨基甲酸盐（Ethylenebisdithiocarbamates，简称 EBDs）和丙撑二硫代氨基甲酸盐（Propylenebis-dithiocarbamates，简称 PBDs）3 类（表1）。常用的

<table>
<thead>
<tr>
<th>组名</th>
<th>化学结构类型</th>
<th>通用名</th>
<th>化学结构</th>
<th>CAS 号</th>
</tr>
</thead>
<tbody>
<tr>
<td>二甲基二硫代氨基甲酸盐</td>
<td>Dimethyldithiocarbamates (DMDs)</td>
<td>福美双</td>
<td>thiram</td>
<td>137-26-8</td>
</tr>
<tr>
<td>二甲基二硫代氨基甲酸盐</td>
<td>Dimethyldithiocarbamates (DMDs)</td>
<td>福美锌</td>
<td>ziram</td>
<td>137-30-4</td>
</tr>
<tr>
<td>二甲基二硫代氨基甲酸盐</td>
<td>Dimethyldithiocarbamates (DMDs)</td>
<td>福美铁</td>
<td>ferbam</td>
<td>14484-64-1</td>
</tr>
<tr>
<td>二硫代氨基甲酸盐类</td>
<td>Dithiocarbamates (DTCs)</td>
<td>代森锰锌</td>
<td>mancozeb</td>
<td>8018-01-7</td>
</tr>
<tr>
<td>二硫代氨基甲酸盐类</td>
<td>Dithiocarbamates (DTCs)</td>
<td>代森锌</td>
<td>zineb</td>
<td>12122-67-7</td>
</tr>
<tr>
<td>二硫代氨基甲酸盐类</td>
<td>Dithiocarbamates (DTCs)</td>
<td>代森锰</td>
<td>mane</td>
<td>12427-38-2</td>
</tr>
<tr>
<td>二硫代氨基甲酸盐类</td>
<td>Dithiocarbamates (DTCs)</td>
<td>代森联</td>
<td>metiram</td>
<td>9006-42-2</td>
</tr>
<tr>
<td>二硫代氨基甲酸盐类</td>
<td>Dithiocarbamates (DTCs)</td>
<td>代森钠</td>
<td>nabor</td>
<td>142-59-6</td>
</tr>
<tr>
<td>二硫代氨基甲酸盐类</td>
<td>Dithiocarbamates (DTCs)</td>
<td>丙森锌</td>
<td>propineb</td>
<td>12071-83-9</td>
</tr>
</tbody>
</table>
DTCs 类杀菌剂主要包括福美双 (thiram)、福美锌 (ziram)、代森钠 (nabam)、代森锰锌 (mancozeb)、代森锌 (zineb) 及丙森锌 (propineb) 等。

随着 DTCs 类杀菌剂的广泛使用，对其安全性评价也在不断深入。研究表明，该类药剂在土壤中移动较快，易进入地下水，其在植物、土壤及动物体内的代谢物——乙撑硫脲 (ETU) 和丙撑硫脲 (PTU) 还具有致癌、诱导有机体突变和致畸性 [2]。目前国内外对 DTCs 类杀菌剂的安全性给予了很大关注，多次对该类药剂进行特别评审，对其使用作出了限制，并提出了加强管理的建议和措施。因此，在作物和食品中加强对 DTCs 类杀菌剂及其代谢物残留的检测显得十分重要。由于 DTCs 类杀菌剂化学结构的特殊性，使得其残留检测研究成为历来颇具挑战性的课题。

1 分析方法

目前国内外对 DTCs 类杀菌剂及其代谢物的残留分析方法主要可归纳为以下几种。

1.1 分光光度法 (Spectrophotometry)

使用分光光度法测定 DTCs 类杀菌剂的残留量，最早是在测定橡胶中硫化促进剂时发现的 [7]，通过碘量法测定 DTCs 在甲醇-氢氧化钾溶液中释放出的二硫化碳 (CS₂) 的量来确定橡胶中硫化促进剂的含量，随后引进到分光光度法中，并且形成了一种固定的消化-蒸馏方法。1964 年 Cullen [8] 改进了此方法，他采用乙醇胺和乙酸铜作为反应试剂，通过观察铜络合物的颜色变化，用分光光度法对部分 DTCs 类杀菌剂进行了定量测定 (λmax = 435 nm)。Kapoor 等 [9] 在 pH 8.5~10.5 下将福美双 (ferbam) 与 4-(2-吡啶偶氮) 间苯二酚配位络合，然后直接用分光光度计进行测定，由于不是离子表面活性剂 X-100 胶束溶液的加入，使该方法的灵敏度大大提高，摩尔吸光系数和桑德尔灵敏度分别为 3.0 \times 10⁴ dm³/(mol·cm) 和 0.013 μg/cm²。该方法可以在其他铁离子、DTCs 和黄原酸盐存在的情况下应用于环境样品、作物及谷物中福美双的残留测定。德国一个残留试验小组 (GDCh) 采用分光光度法测定 DTCs 类杀菌剂酸解过程中释放出来的 CS₂，从而确定了福美双残留的测定方法 DFG S 15 [10]，并在实验室间进行了确证。当在苹果和马铃薯中添加代森锰 (3.8 mg/kg，相当于 2.18 mg/kg CS₂)，在葡萄中添加福美双 (0.45 mg/kg，相当于 0.28 mg/kg CS₂) 时，所得平均回收率分别为 99% 和 86%，相对标准偏差 (RSD) 在 13%~17% 之间，因此国际纯粹与应用化学联合会 (IUPAC) 接受了该方法。Malik 等 [11] 根据铜在阳离子表面活性剂溴化十六烷基三甲铵 (CTAB) 水溶液中能够与 DTCs 形成配合物的特性，建立了一种快速、简单、直接、灵敏度高的福美双的检测分析方法，该方法可用于谷物 (小麦) 和蔬菜样品中福美双的测定。胡秀卿等 [12] 建立了一种黄瓜中丙森锌残留的分析方法，用乙酸铜和二乙醇胺的乙醇溶液吸收丙森锌酸解后释放的 CS₂，在 435 nm 处用分光光度计进行测定，当丙森锌添加浓度在 0.10~5.0 mg/kg 范围内时，平均回收率在 87%~90% 之间，RSD 在 3.4%~10% 之间，对黄瓜的检出限 (LOD) 为 0.10 mg/kg。

分光光度法仪器设备简单，操作简便快速，在色谱技术发展较落后的时期曾得到广泛应用。但分光光度法准确度不高；而色谱技术相比灵敏度不高，需要较多的样品量进行处理分析；对有些含有葡萄糖或硫氰酸盐和芥子油的植物如花椰菜、甘蓝和番木瓜等，由于其在热酸水解过程中会产生 CS₂，故易发生假阳性；另外，热酸水解过程中产生的气体还有硫化氢 (H₂S)、羰基硫 (COS) 等含硫气体，都会对 CS₂ 的准确测定产生干扰。

1.2 气相色谱法 (GC)

1.2.1 顶空气相色谱法 顶空气相色谱法 (HS-GC) 是最近 30 多年中应用最广泛的方法 [13-15]，在欧洲和美国都曾作为权威方法应用于不同作物中 DTCs 类杀菌剂残留量的测定 [16]，我国也将该方法作为出口玉米等作物中 DTCs 类农药残留量检验的标准方法。该方法最早由 McLeod 等 [17] 提出：用 10 mol/L 的硫代硫酸、4 mol/L 盐酸和氯化亚锡的混合溶液，在 60 ℃时对 EBDS 进行酸解，但未能得到令人满意的回收率结果。Ahmad 等 [18] 根据该反应原理，改进了顶空技术，用气-液色谱 (GLC) 测定 DTCs 类杀菌剂的残留量，共检测了 30 多种农产品
中 837 个实际样本。2001 年 Caldas 等[19] 又进一步对 CS2 反应仪器设置进行改进，将其水平反应系统改
为垂直系统，使该方法的反应更简单，费用更少、效
率更高，在大豆、豆类、苹果、香蕉、橙子、番木瓜、番
茄、黄瓜和马铃薯等 100 多个样本中按照 0.15~8.0 mg/kg 的标准添加代森锰锌，福美双和福
美锌，回收率在 82%~120%之间，RSD 在 0~10%(n=3 或 5) 之间。其中对苹果、番茄、番木瓜
样本的检测，传统方法与改进方法结果相当。

然而，由于顶空瓶中不仅有参与热酸反应的样
本本身所释放出来的 CS2，还有硫化氢 (H2S)、羰基硫
(COS) 等含硫气体，它们均会对 CS2 的准确测定产
生干扰。另外，大量的硫化氢气体也会对色谱柱
和仪器产生不良影响，导致仪器稳定性差，方法重复
性差等问题。为克服该问题，英国科学实验中心[20]
曾研究了在同一个顶空瓶中用烃类溶剂（如辛烷烷）
剧酸解过程中产生的 CS2 进行萃取，以取代顶空过程
进行气相色谱测定，得到较满意的结果。简
单来说，即是将 50 g 样品与 150 mL 盐酸 (浓度为
5.6 mol/L) 和 25 mL 辛烷烷混合密封在一个容器
中，于 80°C 水浴中振荡 1 h，冷却后取有机溶剂
5 μL，采用气相色谱-火焰光度法 (GC-FPD) 进行检
测，CS2 的 LOD 值为 0.01 mg/kg。当在梨和莴苣
中添加水平为 0.1 mg/kg 时，福美双的回收率在
92%~100% 之间。

1.2.2 邻丙二胺衍生化法 Ishii 等[21]通过检测丙
森锌酸解产物邻丙二胺 (PDA) 的含量来计算丙森
锌的残留量，具有较高的灵敏度和准确性。胡秀卿
等[22]采用气相色谱建立了丙森锌在番茄中的残留的
分析方法，丙森锌酸解后经离子交换树脂净化，其酸
解产物邻丙二胺经五氟苯甲酰氯衍生化，衍生化产物
于 1.5% 的硅胶柱后经气相色谱-电子捕获检测
器 (GC-ECD) 检测，当添加水平为 0.05, 0.50,
5.00 mg/kg 时，回收率在 92%~101% 之间，RSD 在
2.4%~12.8% 之间，番茄中丙森锌的 LOD 值为
0.02 mg/kg。

顶空气相色谱法灵敏度高，但测定的是所有
DTCs 类杀菌剂产生的 CS2 的总量，不能区分其
3 种结构类型，选择性不强；测定结果的稳定性和重
复性不好；同样在对上述含有硫化氢的植物的测定中，易产生假阳性。邻丙二胺衍生化气相色谱
法灵敏度和准确性高，但处理步骤繁琐，局限性强，因此未能得到广泛应用。

1.3 液相色谱法 (LC)

1.3.1 苯二硫醇衍生化法 DTCs 在一定条件下
能够与 1,2-苯二硫醇 (1,2-BDT) 衍生化得到 1,3-
苯二硫杂环戊烯-2-硫酮 (1,3-BDTH)，该产物能够
直接经液相色谱法定量测定[23-25]。反应原理如图 1。

![图 1 DTCs 与 1,2-BDT 的衍生物过程](image)

Fig. 1 The derivatization process of DTCs with 1,2-BDT

Debbarh 等[26] 在前人研究的基础上，优化试验
条件，用反相液相色谱在紫外 365 nm 处定量分析代
森锰锌与 1,2-苯二硫醇 (1,2-BDT) 的衍生物产物，
流动相为甲醇-水 (70:30, 体积比），方法的 LOD 和
检测限 (LOQ) 分别为 0.1 μg/mL 和 0.25 μg/mL。于
于植物中尤其十字花科蔬菜中分布广泛的是硫氢
酸酯 (R-NCS) [27] 具有和 DTCs 相似的结构，也能参
与相同的衍生物反应，且产物相同，故该方法不适
用于十字花科植物中 DTCs 类杀菌剂的残留分析，
但适用于尿液 [27]、血浆 [26,28] 及动物组织中该类
农药的残留分析。

1.3.2 离子对甲基衍生物法 反应原理如图 2[29]
所示。

DTCs 类杀菌剂经碱性乙胺四乙酸钠
(EDTA-2Na) 水溶液提取，用四丁基硫酸氢铵
(TBAHS) 相转移，之后在有机相中与碘甲烷进行衍
生化反应，产物浓缩后用乙醇或甲醇定容，经液相色
谱测定，在紫外 272 nm 下能得到很好的结果。该
方法最早由 Gustafsson 等[30] 提出并应用于血浆中
福美双含量的分析。Chi-Chu Lo 等[31] 采用该方法
对丙森锌、代森锌、代森锰 (maneb) 及代森锰锌等
进行同时分析，结果发现其能很好地区分丙森锌和
EBDs, after which the authors further investigated the residue content by using liquid chromatography (LC) to detect the residual quantities. In DTCs, in the procedure of quantification, by using the procedure of quantification, it was found that the residual quantities were of a lower level than the detection limit. This method is more suitable for the analysis of residues.

Fig. 2 The derivatization process of DTCs with methyl iodide

In the process of derivatization, the ion-pair reagent was used to derivatize the compounds. The derivatization process was studied by using liquid chromatography (LC) and mass spectrometry (MS). The derivatized samples were then analyzed using LC-MS. The results showed that the method was sensitive and selective for the detection of DTCs. The LOD values were in the range of 0.01 to 0.1 ng/mL. The method was validated with samples spiked with different levels of DTCs. The recovery rates were in the range of 90% to 100%.

1.3.4 Liquid chromatography-mass spectrometry (LC-MS) was used to analyze the samples. The method was validated with samples spiked with different levels of DTCs. The recovery rates were in the range of 90% to 100%.

In conclusion, the method described in this paper is a sensitive and selective method for the analysis of DTCs in environmental samples.
APCI-MS/MS) 检测了自来水和河水中福代锌 (polyacrylamide) 的残留量; 当蒸馏水中的添加水平为 0.25~5.0 μg/L 时, 所测定生物的回收率为 63%~74%, DMDs 和 EBDS 的 LOD 值分别为 0.061 和 0.032 μg/L。Brewin 等[44]报道了一种不同水果、蔬菜样本中 EBDS [代森锰、代森锰、代森锌、代森钠 (metiram)] 的液相色谱-串联质谱法 (LC-MS/MS): 样本用碱性 EDTA-半胱氨酸溶液提取, 经硅甲烷基化, SPE 柱柱化, 结果显示, EBDS 在苹果、葡萄和番茄中的 LOQ 值为 0.01 mg/kg, 在芦笋、小麦和洋葱中添加水平为 0.01 mg/kg 时, 回收率为 79%~104%。Cnogoroc 等[45]在前期研究的基础上, 用 LC-MS/MS 代替 LC-MS 检测水果和蔬菜中 3 类 DTCs 杀菌剂的残留量, LOD 和 LOQ 值分别接近 0.001 和 0.005 mg/kg, 在番茄中添加水平为 0.05~1.0 mg/kg 时, 回收率为 97%~101%。通过检测不同国家和地区的多种水果和蔬菜, Cnogoroc 等[46]比较了 LC-MS/MS, LC-MS 和传统 CS2 方法, 发现除传统 CS2 方法在花椰菜和番木瓜中出现假阳性外, 3 种方法的区分不大, 但 LC-MS/MS 方法的选择性和灵敏度都要高于 LC-MS 和传统 CS2 方法。

液相色谱法虽然前处理过程较顶空气相色谱法复杂, 但准确性和重现性好; 不易产生假阳性, 应用范围较广; 选择性强, 对 3 种结构类型的化合物都能实现准确分离; 液相色谱-质谱联用技术的应用使方法的灵敏度和选择性有了更大的提高, 也将成为今后的研究方向。

1.4 毛细管电泳法

毛细管电泳法是在凝胶电泳法基础上发展起来的一种分离、检测技术, 是对 HPLC 分析的补充。Rossi 等[47]采用毛细管电泳法测定, 定量测得了包括氨基甲酸酯,硫代氨基甲酸酯和 DTCs 类杀菌剂在内的 11 种化合物, 最后用胶束电动毛细管电泳 (MEKC) 对被测物进行区分。Malik 等[48]根据缓冲液 pH 值和性质的不同, 建立了一种简单、灵敏度高、可分别测定硫酸肼缓冲溶液中的福代锌和代森锌的毛细管电泳法, 测得福美锌与代森锌的 LOD 值 (S/N = 3) 分别为 1.88 × 10^{-6} mol/L (0.57 μg/L) 与 2.48 × 10^{-6} mol/L (0.68 μg/L)。该方法后被应用到小麦样品中福美锌和代森锌的残留测定。毛细管电泳法选择性比较好, 但是该方法只能检测较高浓度的样品, 不易满足残留分析的要求。

除以上方法外, 用于 DTCs 类杀菌剂残留测定的还有极谱法[49], 指示管法[49], 流体注射荧光测定法[50]及生物传感法[51]等, 但这些方法在应用上都不及现代色谱技术广泛。

1.5 主要代谢物的分析方法

乙撑硫脲 (ETU) 和丙撑硫脲 (PTU) 作为 DTCs 类杀菌剂最主要的代谢物和降解产物, 由于具有致癌、诱导有机体突变和致畸性[52], 其残留分析方法的研究同样受到了足够的重视。目前单独测定 DTCs 类杀菌剂代谢物的方法已经很多。Fustinoni 等[53]利用气相色谱-质谱联用法 (GC-MS) 测定人体尿液中的 ETU, 方法的回收率为 90%, LOQ 为 2 μg/L。Garcinhuo 等[54]利用基质固相分散-反相液相色谱法 (MSPD-LC) 检测杏仁 EBDs 的主要代谢物, 平均回收率为 76%~85%; 对 ETU 的最小检出量为 0.05 mg/kg。Doerge 等[55]使用带有金属电极的脉冲电流检测器 (PAD) 的液相色谱, 检测了农作物和地下水中残余的 ETU, 其中农作物和地下水中 ETU 的 LOD 值分别为 5~10 μg/kg 和 5 μg/L。Vander 等[56]利用气相色谱-碱金属火焰离子化检测器 (GC-AFID) 检测水中的 ETU, LOD 值低于 0.1 μg/L, 在地下水中的平均回收率为 71%, 并用质谱进行了确证。Meiring 等[57]利用单步提取衍生、气相色谱-负离子化学电离质谱法 (GC-NCI-MS) 测定水中的 ETU, 得到了很好的结果。Dubey 等[58]利用两步提取衍生, 气相色谱-电子捕获检测器 (ECD) 和氮磷检测器 (NPD) 检测了食品中的 ETU, 也得到了很好的结果。国内关于 ETU 检测的研究也有很多。王等[59]采用高效液相色谱法对代森锌生产废水中的 ETU 进行了分离和定性、定量检测, 方法的回收率为 100.9%~103.0%。曹爱华等[60]采用高效液相色谱法测定了烟草中 ETU 的残留量, 在 0.1~10.0 mg/kg 添加浓度范围内, 番茄叶、干烟叶中 ETU 的平均回收率为 88.60%~86.17% 之间, RSD 为 0.9%~4.2%。石利利等[61]通过将 ETU 转化为 S-乙撑硫脲, 采用 GC-NPD 检测荔枝中残留的 ETU, 结果表明, 荔枝果肉中 ETU 的回收率为 87.3%~105.6%, RSD 为 3.22%~4.63% (n = 3), LOQ 为 5.0 × 10^{-10} g。
其残留量。分光光度法作为较传统的分析方法，在色谱技术应用不够广泛时，曾被大力推荐使用，但该方法的灵敏度不高，一般难以满足现代农药残留分析的要求。CS2 顶空气相色谱法作为一种重要的方法一直应用至今，灵敏度较高，但选择性不强，易出现假阳性和干扰因素多，且重复性差；衍生化液相色谱法虽然操作步骤多，耗时较长，但结果可靠。在我国正逐步被广泛采用，有取代顶空气相色谱法的趋势；毛细管电泳法选择性比较高，但只限于高浓度样品的检测。

2007 年，欧盟委员会颁布了一个关于不同作物中部分 DTCs 类农药残留限量（MRLs）要求的指令[61]，规定丙烯锌的 MRLs 值以临丙二胺计，福美双的 MRLs 值以福美双计，福美锌的 MRLs 值以福美锌计，而不再以 CS2 计；另外，一些 DTCs 类农药的 MRLs 值并没有包含在 2005/396/EC 附录 II 中，按照欧盟规定，若某种农药的 MRLs 值未包含在附录 II、III、IV 中任何一个时，若无特殊规定，则默认该农药的 MRLs 值为 0.01 mg/kg[62]。由于对 DTCs 类农药残留限量的特殊要求，目前只有能够直接测定 DTCs 中阴离子含量的液相色谱-质谱联用及串联质谱法能够满足需要。这两种方法不但能避免由衍生试剂带来的干扰和复杂不要等问题，而且可达到其他几种方法不能实现的高灵敏度和高选择性的目标，有可能逐步成为 DTCs 类杀菌剂残留分析的主流方法。同时，农药残留检测要求尽量减少分析过程所花费的时间，实现操作自动化，尽可能减少人为操作的误差，减少溶剂的使用量，以减轻对环境和排放的污染。因此，研究能够同时测定 DTCs 类杀菌剂母体及其代谢物乙撑硫脲（ETU）、丙撑硫脲（PTU）的串联质谱法将是今后进一步研究的热点课题。

参考文献:

[46] ROSSI M, ROTILIO D. Analysis of carbamate pesticides...
by micellar electrokinetic chromatography [J]. J High Res

[47] MALIK A K, FAUBEL W. Capillary electrophoretic
determination of zinc dimethylidithiocarbamate (ziram) and zinc
ethenelydithiocarbamate (zineb) [J]. Talanta, 2000, 52

polarographic determination of tetramethylium disulphide in
commercial fungicides and rubber accelerators [J]. Process

[49] MARCHENKO D Y, MOROSANOVA E I, KUZMIN N M,
et al. Indicator tubes for the determination of reducing agents in

[50] PEREZ-RUIZ T, MARTHINEZ-LOZANO C, TOMAS V,
et al. Flow injection fluorimetric determination of nabam and

[51] SMITH C D, TIAO G, BEEBE T. High sensitive bienzymic
sensor for the detection of dithiocarbamate fungicides[J].

gas chromatography-mass spectrometry for the determination of
urinary ethylenethiourea in humans[J]. J Chromatogr B, 2005,
814; 251 – 258.

[53] GARCINUÑO R M, RAMOSL L, FERNANDEZ-HERNANDO P,
et al. Optimization of a matrix solid-phase dispersion method
with subsequent clean-up for the determination of ethylene
bisdithiocarbamate residues in almond samples [J]. J

[54] DOERGE D R, YEE A B K. Liquid chromatographic determi-
nation of ethylenethiourea using pulsed amperometric detection

WILDE O. Determination of ethylenethiourea in water samples
by gas chromatography with alkali flame ionization detection and
mass spectrometric confirmation[J]. J Chromatogr, 1993, 643;
163 – 168.

[56] MEIRING H D, DE JONG A P J M. Determination of
ethylenethiourea in water by single-step extractive derivatization
and gas chromatography-negative ion chemical ionization mass

[57] DUBER J K, HEBERER T, STAN H J. Determination of
ethylenethiourea in food commodities by a two-step derivatization
method and gas chromatography with electron-capture and
31 – 38.

[58] WANG Yuan(王远), WANG Hong-qing(王宏庆), WANG

[59] CAO Ai-hua(曹爱华), XU Guang-jun(徐光军), LI Yi-qiang
(李义强), et al. 代森锰锌在烟草中的残留分析[J]. Tobacco

[60] SHI Li-li(石利利), SHAN Zheng-jun(单正军), JIN Yi(金
怡), et al. 烟草中代森锰锌及其代谢产物乙撑硫脲残留量的
气相色谱测定[J]. J Instrumental Anal(分析测试学报), 2005,
24(2): 92 – 94.

（责任编辑：唐 婧）

·喜讯·

《农药学学报》荣获 2009 年度
“中国科技论文在线优秀期刊”一等奖

近日从教育部科技发展中心获悉，在 2009 年度“中国科技论文在线优秀期刊”评选中，《农药学学报》荣获了一等奖。

“中国科技论文在线优秀期刊”评选旨在促进科技期刊的健康发展，提高科技期刊质量，推动科技期刊的数字化建设，提高期刊的影响力，扩大期刊的影响力。使科技期刊更好地为科研工作者服务。本次评选根据教育部科技发展中心相关规定及评选办法，对截至 2009 年 11 月 30 日已收录在“中国科技论文在线”科技期刊栏目的教育部主管的期刊，就其影响因子及他引率、网站收录论文数和下载量、期刊入网的完整性和期刊编委的国际化程度等指标进行统计分析，经过严格的评审，共评出一等奖 30 名，二等奖 65 名。