QuEChERS-GC-MS/MS 法筛查花椒中
115 种农药残留

张艳峰，徐鹏，王会利*
（中国科学院生态环境研究中心 环境生物技术重点实验室，北京 100085）

摘要：建立了 QuEChERS 技术结合气相色谱-串联质谱 (GC-MS/MS) 同时检测花椒中 115 种农药残留的快速分析方法。样品采用优化的 QuEChERS 前处理方法处理，在多反应监测模式下用 GC-MS/MS 检测，基质匹配内标法定量分析。结果表明：在 0.002~0.40 mg/L 范围内，115 种农药的质量浓度与内标物质质量浓度的比值和对应的目标物峰面积与内标物峰面积的比值间呈良好的线性关系，相关系数 r 均大于 0.99；定量限为 0.01~0.02 mg/kg；在 0.01、0.02、0.05、0.10 和 0.20 mg/kg 5 个浓度添加水平下，115 种农药的平均回收率为 51%~150%，RSD 为 0.8%~34%，其中 80 种农药的平均回收率在 70%~120%，满足残留分析要求。该方法操作简便快捷、具有良好的准确度、精密度和灵敏度，为花椒中多种农药残留的快速筛查提供了可靠的分析手段。

关键词：QuEChERS; 气相色谱-串联质谱; 花椒; 农药残留

Screening of 115 pesticide residues in Chinese prickly ash by QuEChERS-GC-MS/MS

ZHANG Yanfeng，XU Peng，WANG Huili*
（Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China）

Abstract: A rapid multiresidue analysis method for 115 pesticides in chinese prickly ash based on QuEChERS (quick, easy, cheap, effective, rugged and safe) procedure combined with gas chromatography-tandem mass spectrometry (GC-MS/MS) was developed and validated. The samples were pretreated with optimized QuEChERS technique, detected by GC-MS/MS based on multiple reaction monitoring mode, and analyzed quantitatively by matrix-matched internal standard method. The validation results showed a good linear relationship within the calibration linearity range of 0.002-0.40 mg/L with the correlation coefficient(r) greater than 0.99. The limits of quantification for 115 pesticides were in the range of 0.01-0.02 mg/kg. The recoveries were in the range of 51%-150% with the RSDs of 0.8%-34%, when the fortified level was 0.01, 0.02, 0.05, 0.10 and 0.20 mg/kg. Among them, the recoveries of 80 pesticides were in the range of 70%-120% which met the residue analysis
This method was simple, fast, accurate, precise and sensitive, which provided a reliable analytical tool for rapid screening of pesticide multiresidues in Chinese prickly ash.

Keywords: QuEChERS; gas chromatography-tandem mass spectrometry; Chinese prickly ash; pesticide residues

花椒是芸香科（Rutaceae）植物花椒（Zanthoxylum bungeanum Maxim.）或青椒（Zanthoxylum schinifolium Sieb.et Zucc.）的干燥成熟果皮[1-2]，不仅是中国传统的香辛料，而且在医药、防腐、杀菌、防虫及工业等方面具有重要的使用价值[3-4]。中国是花椒产业大国，但至今仍无在花椒上的登记使用的农药品种，导致农药滥用严重[5-7]。中国发布的最新《食品安全国家标准 食品中农药最大残留限量》（GB 2763—2019）中也未包括花椒的最大残留限量（MRL），仅能获得个别农药在果类调味料中的MRL值在0.01~5 mg/kg[8]。为控制农药残留，建立花椒中农药多残留检测方法尤为重要。

1 材料与方法

1.1 仪器与试剂

气相色谱-串联质谱联用仪（美国 Agilent 公司）；VF-1701 毛细管质谱专用柱（30 m × 0.25 mm，0.25 μm）（美国 Agilent 公司）；HC-3018 高速离心机（安徽中科中佳科学仪器有限公司）；AL104-IC 电子天平（瑞士 METTLER TOLEDO 公司）；0.22 μm 微孔滤膜（中国天津博纳艾杰尔科技有限公司）。环氧七氯 B 标准品和115种农药标准品（见表1，纯度≥95%，DrEhrenstorfer，德国）。乙酸乙酯、丙酮（色谱纯，美国 Fisher Scientific 公司），乙腈、醋酸（色谱纯，天津科密欧公司），无水硫酸镁、醋酸钠（分析纯，国药集团化学试剂有限公司）；N-丙基乙二胺吸附剂（PSA）、十八烷基键合硅胶吸附剂（C18）和石墨化碳黑（GCB）（美国 Supelco 公司）；试验用水为 Milli-Q 超纯水。

1.2 试验方法

1.2.1 样品前处理 取花椒全果样本粉碎研磨成粉后过50目筛，充分混匀备用。

表 1 115 种农药在 GC-MS/MS 上的保留时间及采集参数

<table>
<thead>
<tr>
<th>编号 No.</th>
<th>农药 Pesticide</th>
<th>保留时间 Retention time/min</th>
<th>定量离子对 Quantitative ion pair(m/z)</th>
<th>碰撞能量 Collision energy/eV</th>
<th>定性离子对 Qualitative ion pair(m/z)</th>
<th>碰撞能量 Collision energy/eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>氟氰菊酯 acrinathrin</td>
<td>31.86</td>
<td>207.8 > 181.1</td>
<td>181.0 > 127.0</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>艾氏剂 aldrin</td>
<td>21.15</td>
<td>262.9 > 192.9</td>
<td>254.9 > 220.0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>苯灭净 ametryn</td>
<td>22.34</td>
<td>227.0 > 170.1</td>
<td>227.0 > 58.1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>阿特拉通 atraton</td>
<td>18.42</td>
<td>211.0 > 169.1</td>
<td>169.0 > 154.1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>苯氟虫腙 atrazine</td>
<td>19.54</td>
<td>214.9 > 58.1</td>
<td>214.9 > 200.2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>盐霉素 azinphos-ethyl</td>
<td>32.56</td>
<td>132.0 > 77.1</td>
<td>160.0 > 77.1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>硫酰胺苯胺 benflumethanol</td>
<td>26.24</td>
<td>221.0 > 193.1</td>
<td>176.1 > 91.1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>苯霜灵 benalaxyl</td>
<td>29.07</td>
<td>148.0 > 77.0</td>
<td>148.0 > 105.1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>丙氟氯苯 benfluralin</td>
<td>16.66</td>
<td>292.0 > 264.0</td>
<td>292.0 > 206.0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>β-六六 DDD beta-BHC</td>
<td>22.12</td>
<td>216.9 > 181.0</td>
<td>181.0 > 145.0</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>α-六六 DDT delta-BHC</td>
<td>22.98</td>
<td>217.0 > 181.1</td>
<td>216.9 > 181.0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>γ-六六 DDT gamma-BHC</td>
<td>19.17</td>
<td>216.9 > 191.0</td>
<td>181.0 > 145.0</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>甲基异烟胺 bifenox</td>
<td>31.48</td>
<td>340.9 > 309.9</td>
<td>189.1 > 126.0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>联苯 biphenyl</td>
<td>9.96</td>
<td>154.1 > 153.1</td>
<td>153.1 > 152.1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>乙基硫磷 bromophos-ethyl</td>
<td>24.64</td>
<td>358.7 > 302.8</td>
<td>302.8 > 284.7</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>丁草胺 butachlor</td>
<td>25.55</td>
<td>236.9 > 160.2</td>
<td>176.1 > 147.1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>抗除草剂 butamifos</td>
<td>26.87</td>
<td>285.9 > 202.0</td>
<td>200.0 > 92.0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>克百威 carbofuran</td>
<td>19.39</td>
<td>164.2 > 149.1</td>
<td>149.1 > 121.1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>氰丹-反式 trans chlordane</td>
<td>24.96</td>
<td>372.8 > 265.8</td>
<td>271.7 > 236.9</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>杀螨菊 chlorfenson</td>
<td>27.23</td>
<td>175.0 > 111.0</td>
<td>111.0 > 75.0</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>胺虫胺 chorfenphos</td>
<td>24.87</td>
<td>266.9 > 159.1</td>
<td>322.8 > 266.8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>乙酯杀螨醇 chlorobenzilate</td>
<td>27.99</td>
<td>251.1 > 139.1</td>
<td>139.1 > 111.0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>氯苯甲酰氯 choroneb</td>
<td>13.17</td>
<td>206.0 > 191.1</td>
<td>208.0 > 193.1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>氯苯胺氯 chlorpromam</td>
<td>17.27</td>
<td>153.0 > 125.1</td>
<td>153.0 > 90.0</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>毒死蜱 chlorpyrifos</td>
<td>22.35</td>
<td>198.9 > 171.0</td>
<td>196.9 > 169.0</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>甲基毒死蜱 chlorpyrifos-methyl</td>
<td>20.83</td>
<td>285.9 > 92.9</td>
<td>287.9 > 92.9</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>异噁草酮 clomazone</td>
<td>18.65</td>
<td>204.1 > 107.1</td>
<td>125.0 > 89.0</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>蝇毒磷 coumaphos</td>
<td>33.77</td>
<td>361.9 > 109.0</td>
<td>210.0 > 182.0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>氟氯氰菊酯 crylithrin</td>
<td>33.89</td>
<td>162.9 > 127.0</td>
<td>198.9 > 170.1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>高效氟氯氰菊酯 lambda-cyhalothrin</td>
<td>31.88</td>
<td>208.0 > 181.0</td>
<td>181.1 > 152.0</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>环丙唑醇 cyproconazole</td>
<td>27.98</td>
<td>139.0 > 111.0</td>
<td>139.0 > 75.0</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>嗪菌环胺 cyprodinil</td>
<td>23.75</td>
<td>225.2 > 224.3</td>
<td>224.2 > 208.2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>2,4'-滴涕 p,p'-DDE</td>
<td>24.42</td>
<td>246.0 > 176.2</td>
<td>248.0 > 176.2</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>4,4'-滴涕 p,p'-DDT</td>
<td>28.41</td>
<td>235.0 > 165.2</td>
<td>237.0 > 165.2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>敌草净 Desmetryn</td>
<td>21.38</td>
<td>213.0 > 58.1</td>
<td>213.0 > 171.2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>二嗪磷 diazinon</td>
<td>18.52</td>
<td>137.1 > 84.0</td>
<td>137.1 > 54.0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>稻草灵 diclofop-methyl</td>
<td>29.51</td>
<td>339.9 > 252.9</td>
<td>253.0 > 162.1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>百治磷 dicrotosof</td>
<td>18.73</td>
<td>127.0 > 109.0</td>
<td>127.0 > 95.0</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>狄氏剂 dieldrin</td>
<td>26.19</td>
<td>277.0 > 241.0</td>
<td>262.9 > 193.0</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>苯胺甲环磷 difenoconazole</td>
<td>36.41</td>
<td>322.8 > 264.8</td>
<td>264.9 > 202.0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>烯唑醇 diniconazole</td>
<td>28.85</td>
<td>267.9 > 232.1</td>
<td>267.9 > 232.1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>二苯胺 diphenylamine</td>
<td>16.05</td>
<td>169.0 > 168.2</td>
<td>168.0 > 167.2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>异丙净 dipropetryn</td>
<td>22.81</td>
<td>255.1 > 222.1</td>
<td>255.1 > 180.1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>乙硫磷 disulfoton sulfone</td>
<td>28.35</td>
<td>213.0 > 153.0</td>
<td>213.0 > 96.9</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>碘草敌 ethiolate</td>
<td>6.81</td>
<td>100.0 > 72.0</td>
<td>161.0 > 100.0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>编号</td>
<td>农药</td>
<td>保留时间/min</td>
<td>定量离子对</td>
<td>碰撞能量</td>
<td>定性离子对</td>
<td>碰撞能量</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>46</td>
<td>乙硫磷 ethion</td>
<td>28.47</td>
<td>230.9 > 129.0</td>
<td>20</td>
<td>230.9 > 175.0</td>
<td>10</td>
</tr>
<tr>
<td>47</td>
<td>乙氧呋草黄 ethofumesate</td>
<td>23.77</td>
<td>206.9 > 161.1</td>
<td>10</td>
<td>161.0 > 105.1</td>
<td>10</td>
</tr>
<tr>
<td>48</td>
<td>乙螨唑 etoxazole</td>
<td>30.42</td>
<td>141.0 > 63.1</td>
<td>30</td>
<td>141.0 > 113.0</td>
<td>15</td>
</tr>
<tr>
<td>49</td>
<td>土菌灵 etriazolo</td>
<td>11.28</td>
<td>211.1 > 183.0</td>
<td>10</td>
<td>183.0 > 140.0</td>
<td>15</td>
</tr>
<tr>
<td>50</td>
<td>乙嘧硫磷 etrimfos</td>
<td>19.41</td>
<td>181.0 > 153.1</td>
<td>5</td>
<td>168.0 > 153.1</td>
<td>5</td>
</tr>
<tr>
<td>51</td>
<td>伏灭磷 famphur</td>
<td>30.56</td>
<td>218.0 > 109.0</td>
<td>15</td>
<td>217.0 > 92.9</td>
<td>10</td>
</tr>
<tr>
<td>52</td>
<td>二甲戊灵 fenbuconazole</td>
<td>34.79</td>
<td>197.9 > 129.0</td>
<td>15</td>
<td>128.9 > 102.1</td>
<td>15</td>
</tr>
<tr>
<td>53</td>
<td>杀螟硫磷 fenitrothion</td>
<td>23.47</td>
<td>277.0 > 260.0</td>
<td>5</td>
<td>277.1 > 109.0</td>
<td>15</td>
</tr>
<tr>
<td>54</td>
<td>仲丁威 fenobucarb</td>
<td>16.28</td>
<td>121.0 > 77.0</td>
<td>20</td>
<td>121.0 > 103.1</td>
<td>15</td>
</tr>
<tr>
<td>55</td>
<td>甲氰菊酯 fenpropathrin</td>
<td>30.69</td>
<td>264.9 > 210.0</td>
<td>10</td>
<td>207.9 > 181.0</td>
<td>5</td>
</tr>
<tr>
<td>56</td>
<td>甲草磷 fenthiion sulfone</td>
<td>30.08</td>
<td>309.9 > 105.0</td>
<td>10</td>
<td>135.9 > 92.0</td>
<td>10</td>
</tr>
<tr>
<td>57</td>
<td>甲草磷亚砜 fenthiion sulfoxide</td>
<td>29.72</td>
<td>279.0 > 109.0</td>
<td>15</td>
<td>278.0 > 109.0</td>
<td>15</td>
</tr>
<tr>
<td>58</td>
<td>氟虫腈 fipronil</td>
<td>21.65</td>
<td>366.8 > 212.8</td>
<td>25</td>
<td>368.8 > 214.8</td>
<td>25</td>
</tr>
<tr>
<td>59</td>
<td>呋喃多草醚 fluazifop-butyl</td>
<td>27.43</td>
<td>281.9 > 238.0</td>
<td>20</td>
<td>281.9 > 91.0</td>
<td>20</td>
</tr>
<tr>
<td>60</td>
<td>氟氰戊菊酯 flucythrinate</td>
<td>34.32</td>
<td>156.9 > 107.1</td>
<td>15</td>
<td>198.9 > 157.0</td>
<td>10</td>
</tr>
<tr>
<td>61</td>
<td>吲虫胺 fludioxonil</td>
<td>30.29</td>
<td>248.0 > 154.1</td>
<td>20</td>
<td>248.0 > 182.1</td>
<td>10</td>
</tr>
<tr>
<td>62</td>
<td>三氟氯草醚 fluorodifen</td>
<td>28.67</td>
<td>190.0 > 126.1</td>
<td>10</td>
<td>190.0 > 75.0</td>
<td>20</td>
</tr>
<tr>
<td>63</td>
<td>氯唑啉 fluquinconazole</td>
<td>32.98</td>
<td>340.0 > 298.0</td>
<td>15</td>
<td>108.0 > 57.0</td>
<td>15</td>
</tr>
<tr>
<td>64</td>
<td>氯氟氰菊酯 taa-fluvalinate</td>
<td>35.85</td>
<td>250.0 > 55.0</td>
<td>40</td>
<td>250.0 > 200.0</td>
<td>40</td>
</tr>
<tr>
<td>65</td>
<td>己唑醇 hexaconazole</td>
<td>26.96</td>
<td>231.0 > 175.0</td>
<td>10</td>
<td>256.0 > 82.1</td>
<td>10</td>
</tr>
<tr>
<td>66</td>
<td>异菌脲 iprodione</td>
<td>27.74</td>
<td>314.0 > 245.0</td>
<td>25</td>
<td>187.0 > 124.0</td>
<td>25</td>
</tr>
<tr>
<td>67</td>
<td>氯唑磷 isazofos</td>
<td>20.26</td>
<td>161.0 > 119.1</td>
<td>5</td>
<td>161.0 > 146.0</td>
<td>5</td>
</tr>
<tr>
<td>68</td>
<td>水胺硫磷 isocarbophos</td>
<td>20.23</td>
<td>135.9 > 108.0</td>
<td>15</td>
<td>135.9 > 69.0</td>
<td>30</td>
</tr>
<tr>
<td>69</td>
<td>水胺硫磷 isofenphos oxon</td>
<td>24.69</td>
<td>212.9 > 121.1</td>
<td>10</td>
<td>212.9 > 185.1</td>
<td>5</td>
</tr>
<tr>
<td>70</td>
<td>稻瘟灵 isoprotiolane</td>
<td>27.51</td>
<td>162.1 > 85.0</td>
<td>20</td>
<td>162.1 > 134.0</td>
<td>5</td>
</tr>
<tr>
<td>71</td>
<td>水溶磷 leptophos</td>
<td>30.93</td>
<td>171.0 > 77.1</td>
<td>15</td>
<td>154.9 > 77.1</td>
<td>15</td>
</tr>
<tr>
<td>72</td>
<td>马拉氧磷 malaoxon</td>
<td>23.31</td>
<td>126.9 > 99.0</td>
<td>5</td>
<td>126.9 > 55.0</td>
<td>5</td>
</tr>
<tr>
<td>73</td>
<td>马拉硫磷 malathion</td>
<td>23.29</td>
<td>172.9 > 99.0</td>
<td>15</td>
<td>157.8 > 125.0</td>
<td>5</td>
</tr>
<tr>
<td>74</td>
<td>苯嘧磺草胺 mafenacet</td>
<td>32.04</td>
<td>192.0 > 136.1</td>
<td>15</td>
<td>192.0 > 109.1</td>
<td>30</td>
</tr>
<tr>
<td>75</td>
<td>氰草津 metpropyrine</td>
<td>23.83</td>
<td>256.0 > 212.1</td>
<td>15</td>
<td>256.0 > 170.1</td>
<td>25</td>
</tr>
<tr>
<td>76</td>
<td>甲藻藻油 o,p'-methoxychlor</td>
<td>29.13</td>
<td>227.1 > 121.1</td>
<td>10</td>
<td>227.1 > 91.1</td>
<td>35</td>
</tr>
<tr>
<td>77</td>
<td>绿谷隆 monolinuron</td>
<td>20.01</td>
<td>214.0 > 61.0</td>
<td>10</td>
<td>155.0 > 127.0</td>
<td>10</td>
</tr>
<tr>
<td>78</td>
<td>赭菌酯 myclobutanil</td>
<td>29.00</td>
<td>179.0 > 125.1</td>
<td>10</td>
<td>179.0 > 90.0</td>
<td>30</td>
</tr>
<tr>
<td>79</td>
<td>二溴磷 naled</td>
<td>8.41</td>
<td>144.9 > 109.0</td>
<td>15</td>
<td>108.9 > 79.0</td>
<td>5</td>
</tr>
<tr>
<td>80</td>
<td>敌草胺 napropamide</td>
<td>22.93</td>
<td>128.0 > 72.1</td>
<td>5</td>
<td>128.0 > 100.1</td>
<td>10</td>
</tr>
<tr>
<td>81</td>
<td>除草醚 nitrofen</td>
<td>28.15</td>
<td>202.0 > 139.1</td>
<td>20</td>
<td>282.9 > 253.0</td>
<td>10</td>
</tr>
<tr>
<td>82</td>
<td>氧乐果 omethoate</td>
<td>18.21</td>
<td>155.9 > 110.0</td>
<td>5</td>
<td>109.9 > 79.0</td>
<td>15</td>
</tr>
<tr>
<td>83</td>
<td>咖啡灵 oxadixyl</td>
<td>30.34</td>
<td>163.0 > 132.1</td>
<td>5</td>
<td>163.0 > 117.1</td>
<td>25</td>
</tr>
<tr>
<td>84</td>
<td>多效唑 paclobutrazol</td>
<td>27.36</td>
<td>236.0 > 125.1</td>
<td>10</td>
<td>125.1 > 89.0</td>
<td>20</td>
</tr>
<tr>
<td>85</td>
<td>甲基对硫磷 parathion-methyl</td>
<td>23.08</td>
<td>232.9 > 109.0</td>
<td>10</td>
<td>262.9 > 79.0</td>
<td>30</td>
</tr>
<tr>
<td>86</td>
<td>二甲戊灵 pendimethalin</td>
<td>24.14</td>
<td>251.8 > 162.2</td>
<td>20</td>
<td>251.8 > 161.1</td>
<td>15</td>
</tr>
<tr>
<td>87</td>
<td>五氯苯胺 pentachloroaniline</td>
<td>20.37</td>
<td>262.8 > 192.0</td>
<td>20</td>
<td>264.9 > 194.0</td>
<td>20</td>
</tr>
<tr>
<td>88</td>
<td>五氯硝基苯 pentachloronitrobenzene</td>
<td>17.70</td>
<td>236.9 > 118.9</td>
<td>25</td>
<td>236.9 > 142.9</td>
<td>30</td>
</tr>
</tbody>
</table>
再以 12 ℃/min 升至 300 ℃ 保持 6 min；载气为氢气 (纯度 ≥ 99.999%)，流速 1.0 mL/min；进样量 1.0 μL；不分流进样。

质谱条件：电子轰击离子源 (EI)：电离能量 70 eV；离子源温度 280 ℃；传输线温度 280 ℃；溶剂延迟 3.5 min；MRM 扫描模式（每种农药分别选择一个定量离子和一个定性离子，所有需要检测离子对按出峰顺序，分时段分别检测）；总运行时间 38 min；每种农药的保留时间、定量离子对和定性离子对和碰撞能量见表 1。

1.2.3 标准溶液配制及标准曲线绘制 农药单一标准溶液配制：分别准确称取 10 mg（精确至 0.1 mg）各农药标准品，用丙酮溶解并定容至 10 mL，配制成质量浓度约为 1 000 mg/mL 的农药单一标准储备液，于-4 ℃ 避光保存。

农药混合标准溶液配制：移取一定体积的 115 种农药单一标准储备液于 250 mL 容量瓶中，用乙酸乙酯定容至刻度，得到单个农药浓度为 4.0 mg/L 的混合标准溶液，于-4 ℃ 避光保存，用于保留时间确定和质谱离子对确认。

内标溶液：准确称取 10 mg（精确至 0.1 mg）环氧七氯 B 标准品，用乙酸乙酯溶解并定容至 10 mL，配成质量浓度约为 1 000 mg/L 的内标储备液，随后用乙酸乙酯稀释成 1 mg/L 的内标溶液。

基质混合标准工作溶液：空白基质溶液氮气吹干，加入 20 μL 内标溶液，加入 1 mL 相应质量浓度的混合标准溶液复溶，过 0.22 μm 微孔滤膜。基质混合标准工作溶液应现用现配。

基质匹配混合标准工作溶液配制：取花椒空白样品，按 1.2.1 节中的方法制得空白基质溶液。量取农药混合标准溶液 1.0 mL，用样品空白基质提取液稀释至 10 mL，配制系列质量浓度的基质匹配混合标准工作溶液，现配现用。
2 结果与分析

2.1 样品前处理方法优化

水化是干样农药残留提取的重要步骤，本研究考察了不同水化时间对提取效率的影响。结果表明，对于花椒样品，因其较强的吸水性，水化30 min 和 60 min 对回收率的影响差别不大。因此选择水化时间为30 min。

比较了乙酸盐和柠檬酸盐缓冲体系对提取效果的影响。结果表明，两个缓冲体系整体回收率结果相当，但是由于乙酸盐缓冲体系使用的提取溶剂和相对应的净化材料较多，因此净化效果优于柠檬酸盐缓冲体系。酸化乙腈（1%乙酸乙腈溶液）形成的缓冲盐体系，也更有利于带有酸性基团（如羧基、酰氨基、醚基等）的农药在乙腈中溶解。最终选择乙酸盐缓冲体系进行前处理。

选择了3种常用的商品化净化材料，考察不同用量和比例下农药回收率和净化效果的差异。不同净化材料配比为：(A) 无水硫酸镁 1 200 mg、PSA 400 mg、C18 400 mg 和 GCB 200 mg；(B) 无水硫酸镁 900 mg、PSA 150 mg 和 GCB 45 mg；(C) 无水硫酸镁 900 mg、PSA 150 mg 和 GCB 15 mg。发现不同净化材料效果差异较大，其中：(A) 净化效果最好，86% 的农药品种回收率在 70%~120% 之间；(B) 次之；(C) 最差。在 (A) 组净化材料配比的基础上考察了 GCB 分别为 400、200 和 64 mg 不同用量对回收率的影响。结果显示回收率差异不大，但使用 400 mg GCB 后嘧霉胺、五氯硝基苯和四氯硝基苯等农药回收率偏低：使用 64 mg GCB 时净化液颜色较深，色素去除率低；使用 200 mg GCB 回收率和色素去除率均较好。最终选择 (A) 组为净化材料。

2.2 质谱方法优化

取农药单一标准溶液进行全扫描，确定目标物保留时间；并通过 NIST 标准谱库检索匹配，确认目标物并获得特征碎片离子。选取特征碎片离子进行子离子扫描，最终确定定量离子对和定性离子对及对应的碰撞能量。在此基础上以目标物的保留时间为中心，调整前后扫描时间跨度，所有离子对按照出峰顺序分时段检测。优化后的结果见表 1，花椒中 115 种农药在 GC-MS/MS 上的总离子流图见图 1。

Fig. 1 GC-MS/MS total ion chromatograms of 115 pesticides (0.05 mg/kg) in Chinese prickly ash using MRM mode

2.3 方法的线性范围及定量限

线性分析结果表明：在 0.002~0.40 mg/L 范围内，115 种农药的质量浓度与对应的峰面积比值间均呈良好的线性关系，相关系数 r 均大于 0.99。

定量限 (LOQ) 定义为该目标物添加回收率试验的最小添加浓度。115 种农药的 LOQ 在 0.01~0.02 mg/kg 之间 (见表 2)。

2.4 方法的准确度和精密度

方法的准确度和精密度分别用添加回收率和添加回收率的标准偏差 (RSD) 来评价。添加回收试验结果 (表 2) 表明：在 0.01、0.02、0.05、0.10 mg/kg 和 0.20 mg/kg 5 个添加水平下，115 种农药在花椒中的平均回收率在 51%~150% 之间，RSD(n = 6) 为 0.8%~34%，其中 80 种农药的平均回收率在 70%~120%，符合农药残留分析要求。硫草敌、五氯苯胺和喹硫环胺的回收率偏低，甲拌磷和二苯胺的回收率偏高，可能是由于复杂基质的干扰或自身极性、稳定性等理化性质的影响。
<table>
<thead>
<tr>
<th>编号 No.</th>
<th>LOQ/ (mg/kg)</th>
<th>0.01 mg/kg</th>
<th>0.02 mg/kg</th>
<th>0.05 mg/kg</th>
<th>0.10 mg/kg</th>
<th>0.20 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>回收率 Recovery%</td>
<td>RSD/ %</td>
<td>回收率 Recovery%</td>
<td>RSD/ %</td>
<td>回收率 Recovery%</td>
<td>RSD/ %</td>
</tr>
<tr>
<td>1</td>
<td>0.01</td>
<td>107</td>
<td>16</td>
<td>118</td>
<td>8.4</td>
<td>114</td>
</tr>
<tr>
<td>2</td>
<td>0.01</td>
<td>82</td>
<td>7.7</td>
<td>101</td>
<td>17</td>
<td>63</td>
</tr>
<tr>
<td>3</td>
<td>0.01</td>
<td>65</td>
<td>22</td>
<td>108</td>
<td>9.7</td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>0.01</td>
<td>101</td>
<td>19</td>
<td>88</td>
<td>13</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>0.01</td>
<td>89</td>
<td>4.4</td>
<td>87</td>
<td>5.4</td>
<td>68</td>
</tr>
<tr>
<td>6</td>
<td>0.01</td>
<td>100</td>
<td>30</td>
<td>78</td>
<td>7.9</td>
<td>117</td>
</tr>
<tr>
<td>7</td>
<td>0.01</td>
<td>96</td>
<td>4.0</td>
<td>95</td>
<td>11</td>
<td>99</td>
</tr>
<tr>
<td>8</td>
<td>0.01</td>
<td>91</td>
<td>13</td>
<td>98</td>
<td>7.2</td>
<td>83</td>
</tr>
<tr>
<td>9</td>
<td>0.01</td>
<td>97</td>
<td>6.0</td>
<td>93</td>
<td>2.0</td>
<td>73</td>
</tr>
<tr>
<td>10</td>
<td>0.01</td>
<td>89</td>
<td>10</td>
<td>85</td>
<td>9.1</td>
<td>76</td>
</tr>
<tr>
<td>11</td>
<td>0.01</td>
<td>91</td>
<td>17</td>
<td>95</td>
<td>15</td>
<td>93</td>
</tr>
<tr>
<td>12</td>
<td>0.01</td>
<td>83</td>
<td>11</td>
<td>94</td>
<td>12</td>
<td>90</td>
</tr>
<tr>
<td>13</td>
<td>0.01</td>
<td>110</td>
<td>9.5</td>
<td>105</td>
<td>15</td>
<td>81</td>
</tr>
<tr>
<td>14</td>
<td>0.01</td>
<td>97</td>
<td>4.1</td>
<td>86</td>
<td>4.7</td>
<td>77</td>
</tr>
<tr>
<td>15</td>
<td>0.01</td>
<td>76</td>
<td>4.2</td>
<td>85</td>
<td>6.1</td>
<td>63</td>
</tr>
<tr>
<td>16</td>
<td>0.01</td>
<td>112</td>
<td>9.5</td>
<td>100</td>
<td>3.5</td>
<td>92</td>
</tr>
<tr>
<td>17</td>
<td>0.01</td>
<td>98</td>
<td>15</td>
<td>100</td>
<td>6.1</td>
<td>75</td>
</tr>
<tr>
<td>18</td>
<td>0.01</td>
<td>104</td>
<td>13</td>
<td>86</td>
<td>15</td>
<td>81</td>
</tr>
<tr>
<td>19</td>
<td>0.01</td>
<td>85</td>
<td>6.9</td>
<td>88</td>
<td>4.4</td>
<td>60</td>
</tr>
<tr>
<td>20</td>
<td>0.01</td>
<td>83</td>
<td>2.0</td>
<td>89</td>
<td>2.7</td>
<td>77</td>
</tr>
<tr>
<td>21</td>
<td>0.01</td>
<td>91</td>
<td>1.6</td>
<td>98</td>
<td>2.5</td>
<td>71</td>
</tr>
<tr>
<td>22</td>
<td>0.01</td>
<td>80</td>
<td>5.1</td>
<td>92</td>
<td>3.5</td>
<td>72</td>
</tr>
<tr>
<td>23</td>
<td>0.01</td>
<td>85</td>
<td>25</td>
<td>84</td>
<td>33</td>
<td>117</td>
</tr>
<tr>
<td>24</td>
<td>0.01</td>
<td>103</td>
<td>10</td>
<td>93</td>
<td>21</td>
<td>112</td>
</tr>
<tr>
<td>25</td>
<td>0.01</td>
<td>79</td>
<td>13</td>
<td>91</td>
<td>9.5</td>
<td>78</td>
</tr>
<tr>
<td>26</td>
<td>0.01</td>
<td>79</td>
<td>4.0</td>
<td>92</td>
<td>5.0</td>
<td>68</td>
</tr>
<tr>
<td>27</td>
<td>0.01</td>
<td>96</td>
<td>4.7</td>
<td>92</td>
<td>3.1</td>
<td>75</td>
</tr>
<tr>
<td>28</td>
<td>0.01</td>
<td>112</td>
<td>15</td>
<td>84</td>
<td>12</td>
<td>83</td>
</tr>
<tr>
<td>29</td>
<td>0.01</td>
<td>97</td>
<td>17</td>
<td>96</td>
<td>13</td>
<td>80</td>
</tr>
<tr>
<td>30</td>
<td>0.01</td>
<td>91</td>
<td>9.9</td>
<td>112</td>
<td>9.0</td>
<td>109</td>
</tr>
<tr>
<td>31</td>
<td>0.01</td>
<td>109</td>
<td>6.7</td>
<td>95</td>
<td>7.9</td>
<td>80</td>
</tr>
<tr>
<td>32</td>
<td>0.01</td>
<td>60</td>
<td>11</td>
<td>60</td>
<td>13</td>
<td>52</td>
</tr>
<tr>
<td>33</td>
<td>0.01</td>
<td>81</td>
<td>4.3</td>
<td>89</td>
<td>2.1</td>
<td>67</td>
</tr>
<tr>
<td>34</td>
<td>0.01</td>
<td>72</td>
<td>5.1</td>
<td>91</td>
<td>5.5</td>
<td>73</td>
</tr>
<tr>
<td>35</td>
<td>0.01</td>
<td>92</td>
<td>8.5</td>
<td>95</td>
<td>3.1</td>
<td>76</td>
</tr>
<tr>
<td>36</td>
<td>0.01</td>
<td>82</td>
<td>4.8</td>
<td>92</td>
<td>4.4</td>
<td>82</td>
</tr>
<tr>
<td>37</td>
<td>0.01</td>
<td>87</td>
<td>4.5</td>
<td>90</td>
<td>4.6</td>
<td>74</td>
</tr>
<tr>
<td>38</td>
<td>0.01</td>
<td>81</td>
<td>14</td>
<td>93</td>
<td>6.6</td>
<td>96</td>
</tr>
<tr>
<td>39</td>
<td>0.01</td>
<td>96</td>
<td>20</td>
<td>82</td>
<td>31</td>
<td>92</td>
</tr>
<tr>
<td>40</td>
<td>0.01</td>
<td>94</td>
<td>5.3</td>
<td>86</td>
<td>7.6</td>
<td>70</td>
</tr>
<tr>
<td>41</td>
<td>0.01</td>
<td>71</td>
<td>5.4</td>
<td>80</td>
<td>1.9</td>
<td>64</td>
</tr>
<tr>
<td>42</td>
<td>0.02</td>
<td>148</td>
<td>4.7</td>
<td>118</td>
<td>1.0</td>
<td>148</td>
</tr>
<tr>
<td>43</td>
<td>0.01</td>
<td>86</td>
<td>4.9</td>
<td>101</td>
<td>3.8</td>
<td>77</td>
</tr>
<tr>
<td>编号</td>
<td>LOQ/ (mg/kg)</td>
<td>添加水平 Spiked level</td>
<td>0.01 mg/kg</td>
<td>0.02 mg/kg</td>
<td>0.05 mg/kg</td>
<td>0.10 mg/kg</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>回收率/ Recovery%</td>
<td>RSD/ %</td>
<td>回收率/ Recovery%</td>
<td>RSD/ %</td>
<td>回收率/ Recovery%</td>
<td>RSD/ %</td>
</tr>
<tr>
<td>44</td>
<td>0.01</td>
<td>106</td>
<td>16</td>
<td>58</td>
<td>24</td>
<td>81</td>
</tr>
<tr>
<td>45</td>
<td>0.01</td>
<td>65</td>
<td>11</td>
<td>61</td>
<td>9.1</td>
<td>53</td>
</tr>
<tr>
<td>46</td>
<td>0.02</td>
<td>127</td>
<td>10</td>
<td>113</td>
<td>8.1</td>
<td>82</td>
</tr>
<tr>
<td>47</td>
<td>0.01</td>
<td>102</td>
<td>5.7</td>
<td>105</td>
<td>6.0</td>
<td>100</td>
</tr>
<tr>
<td>48</td>
<td>0.01</td>
<td>115</td>
<td>13</td>
<td>96</td>
<td>6.3</td>
<td>92</td>
</tr>
<tr>
<td>49</td>
<td>0.01</td>
<td>98</td>
<td>7.1</td>
<td>88</td>
<td>4.3</td>
<td>74</td>
</tr>
<tr>
<td>50</td>
<td>0.01</td>
<td>99</td>
<td>1.3</td>
<td>100</td>
<td>1.7</td>
<td>103</td>
</tr>
<tr>
<td>51</td>
<td>0.01</td>
<td>108</td>
<td>1.0</td>
<td>107</td>
<td>5.9</td>
<td>111</td>
</tr>
<tr>
<td>52</td>
<td>0.01</td>
<td>77</td>
<td>5.5</td>
<td>84</td>
<td>5.8</td>
<td>80</td>
</tr>
<tr>
<td>53</td>
<td>0.01</td>
<td>82</td>
<td>17</td>
<td>97</td>
<td>5.8</td>
<td>85</td>
</tr>
<tr>
<td>54</td>
<td>0.01</td>
<td>99</td>
<td>4.6</td>
<td>96</td>
<td>4.8</td>
<td>95</td>
</tr>
<tr>
<td>55</td>
<td>0.01</td>
<td>77</td>
<td>9.2</td>
<td>101</td>
<td>11</td>
<td>75</td>
</tr>
<tr>
<td>56</td>
<td>0.01</td>
<td>106</td>
<td>11</td>
<td>96</td>
<td>20</td>
<td>109</td>
</tr>
<tr>
<td>57</td>
<td>0.01</td>
<td>108</td>
<td>18</td>
<td>85</td>
<td>22</td>
<td>85</td>
</tr>
<tr>
<td>58</td>
<td>0.01</td>
<td>94</td>
<td>14</td>
<td>85</td>
<td>11</td>
<td>91</td>
</tr>
<tr>
<td>59</td>
<td>0.01</td>
<td>79</td>
<td>14</td>
<td>83</td>
<td>8.1</td>
<td>76</td>
</tr>
<tr>
<td>60</td>
<td>0.01</td>
<td>84</td>
<td>3.8</td>
<td>96</td>
<td>6.0</td>
<td>84</td>
</tr>
<tr>
<td>61</td>
<td>0.01</td>
<td>87</td>
<td>4.9</td>
<td>89</td>
<td>4.4</td>
<td>78</td>
</tr>
<tr>
<td>62</td>
<td>0.01</td>
<td>73</td>
<td>9.8</td>
<td>95</td>
<td>7.2</td>
<td>88</td>
</tr>
<tr>
<td>63</td>
<td>0.01</td>
<td>82</td>
<td>3.4</td>
<td>90</td>
<td>8.1</td>
<td>72</td>
</tr>
<tr>
<td>64</td>
<td>0.01</td>
<td>110</td>
<td>6.8</td>
<td>107</td>
<td>18</td>
<td>67</td>
</tr>
<tr>
<td>65</td>
<td>0.01</td>
<td>99</td>
<td>9.6</td>
<td>95</td>
<td>9.7</td>
<td>97</td>
</tr>
<tr>
<td>66</td>
<td>0.01</td>
<td>92</td>
<td>7.7</td>
<td>83</td>
<td>5.1</td>
<td>78</td>
</tr>
<tr>
<td>67</td>
<td>0.01</td>
<td>100</td>
<td>2.3</td>
<td>114</td>
<td>6.9</td>
<td>102</td>
</tr>
<tr>
<td>68</td>
<td>0.01</td>
<td>99</td>
<td>2.3</td>
<td>104</td>
<td>2.9</td>
<td>105</td>
</tr>
<tr>
<td>69</td>
<td>0.01</td>
<td>80</td>
<td>4.5</td>
<td>83</td>
<td>3.8</td>
<td>65</td>
</tr>
<tr>
<td>70</td>
<td>0.01</td>
<td>90</td>
<td>5.4</td>
<td>100</td>
<td>4.9</td>
<td>81</td>
</tr>
<tr>
<td>71</td>
<td>0.01</td>
<td>100</td>
<td>10</td>
<td>81</td>
<td>14</td>
<td>106</td>
</tr>
<tr>
<td>72</td>
<td>0.01</td>
<td>103</td>
<td>7.5</td>
<td>111</td>
<td>3.1</td>
<td>110</td>
</tr>
<tr>
<td>73</td>
<td>0.01</td>
<td>97</td>
<td>6.9</td>
<td>109</td>
<td>4.9</td>
<td>78</td>
</tr>
<tr>
<td>74</td>
<td>0.01</td>
<td>114</td>
<td>9.4</td>
<td>81</td>
<td>3.6</td>
<td>77</td>
</tr>
<tr>
<td>75</td>
<td>0.01</td>
<td>106</td>
<td>17</td>
<td>87</td>
<td>10</td>
<td>66</td>
</tr>
<tr>
<td>76</td>
<td>0.01</td>
<td>85</td>
<td>12</td>
<td>104</td>
<td>6.4</td>
<td>80</td>
</tr>
<tr>
<td>77</td>
<td>0.01</td>
<td>94</td>
<td>13</td>
<td>101</td>
<td>14</td>
<td>99</td>
</tr>
<tr>
<td>78</td>
<td>0.01</td>
<td>103</td>
<td>7.5</td>
<td>88</td>
<td>3.2</td>
<td>76</td>
</tr>
<tr>
<td>79</td>
<td>0.01</td>
<td>112</td>
<td>14</td>
<td>96</td>
<td>12</td>
<td>93</td>
</tr>
<tr>
<td>80</td>
<td>0.01</td>
<td>76</td>
<td>3.4</td>
<td>91</td>
<td>7.6</td>
<td>79</td>
</tr>
<tr>
<td>81</td>
<td>0.01</td>
<td>106</td>
<td>4.0</td>
<td>99</td>
<td>8.0</td>
<td>99</td>
</tr>
<tr>
<td>82</td>
<td>0.01</td>
<td>86</td>
<td>6.3</td>
<td>114</td>
<td>6.3</td>
<td>104</td>
</tr>
<tr>
<td>83</td>
<td>0.01</td>
<td>95</td>
<td>6.7</td>
<td>85</td>
<td>8.4</td>
<td>90</td>
</tr>
<tr>
<td>84</td>
<td>0.01</td>
<td>70</td>
<td>12</td>
<td>91</td>
<td>12</td>
<td>110</td>
</tr>
<tr>
<td>85</td>
<td>0.01</td>
<td>109</td>
<td>9.1</td>
<td>103</td>
<td>5.8</td>
<td>115</td>
</tr>
<tr>
<td>86</td>
<td>0.01</td>
<td>93</td>
<td>3.9</td>
<td>88</td>
<td>8.7</td>
<td>84</td>
</tr>
</tbody>
</table>
2.5 基质效应

在色谱-质谱联用检测中基质效应普遍存在，花椒中含有的多种化学成分，加之样品在质谱离子化过程和离子传输过程中的复杂环境，都会导致基质效应，影响方法的灵敏度和准确度。本研究首先计算目标物在基质匹配标准溶液中的响应值与内标物响应值的比值，然后计算目标物在质谱联用检测中基质效应，影响方法的灵敏度和准确度。

研究首先计算目标物在基质匹配标准溶液中的响应值与内标物响应值的比值 A，然后计算目标物在纯溶剂中的响应值与与内标物响应值的比值 B，根据公式 (1) 计算基质效应 (ME, %)。

$$\text{ME/}% = \frac{(A-B)/B}{100}$$ \hspace{1cm} (1)

注：农药中英文名称按照编号同表 1。

Note: The Chinese and English names of pesticides were same as the same entries in Table 1.

结果 (图 2) 表明：在 0.05 mg/kg 添加水平时，115 种农药中有 69% 存在基质增强效应，44 个农药的 ME 在 20%~50%，其中有机磷类农药居多，甲基立枯磷、虫线磷和毒壤膦的 ME 均 >50%，对检测结果影响较大。有 31% 存在基质减弱效应，24 个农药的 ME 在 <20%~<50%，氟氰菊酯、莠灭净和艾氏剂的 ME 均小于 <20%，对检测结果影响严重。因此本研究采用基质匹配标准溶液进行校正，经校正后可有效消除基质效应带来的影响，满足花椒中农药残留检测要求。
2.6 实际样品检测

利用所建立的方法对12批次花椒样品进行农药残留分析。结果有7批次检出毒死蜱、氧乐果、马拉硫磷、苯醚甲环唑和多菌灵，其最高检出量分别为0.076、0.117、0.035、0.013和0.088mg/kg，其中氧乐果和多菌灵在其中5个样品中均有检出。

3 结论与讨论

本研究通过优化水化时间、提取溶剂体系、净化材料的用量与配比，对QuEChERS方法进行了改进，结合多反应监测模式下GC-MS/MS检测，建立了115种常用农药在花椒上的QuEChERS-GC-MS/MS筛查方法。与已报道的花椒上的农药残留检测方法相比，本方法具有显著的优势：1）本方法包括了115种农药的检测，远多于其他的单组分检测或某一类农药的检测；2）采用改进的QuEChERS技术大大提高了前处理效率，简化了前处理步骤，确保了方法的准确性和重复性；3）方法的LOQ值低至0.01~0.02mg/kg，完全能够满足对花椒限量检测的要求。花椒中化学成分复杂，基质效应明显，采用基质匹配标准溶液进行校正可得到更为准确的结果。因此，本研究建立的方法具有高灵敏度和高准确度，操作简便快捷，实用性强，填补了花椒中农药残留检测方法的空白，可适用于花椒中日常农药多残留的快速筛查。

参考文献 (References):

(责任编辑: 金淑惠)