林品轩, 刘兆宇, 彭宇漩, 宋鑫宇, 王利祥, 高聪芬, 吴顺凡. 干扰害虫生殖行为的弦音器瞬时感受器电位香草酸通道调节剂研究进展[J]. 农药学学报, 2024, 26(2): 246-256. DOI: 10.16801/j.issn.1008-7303.2024.0035
    引用本文: 林品轩, 刘兆宇, 彭宇漩, 宋鑫宇, 王利祥, 高聪芬, 吴顺凡. 干扰害虫生殖行为的弦音器瞬时感受器电位香草酸通道调节剂研究进展[J]. 农药学学报, 2024, 26(2): 246-256. DOI: 10.16801/j.issn.1008-7303.2024.0035
    LIN Pinxuan, LIU Zhaoyu, PENG Yuxuan, SONG Xinyu, WANG Lixiang, GAO Congfen, WU Shunfan. Advances in chordotonal organ transient receptor potential vanilloid channel modulators that interfere with reproductive behaviour of pests[J]. Chinese Journal of Pesticide Science, 2024, 26(2): 246-256. DOI: 10.16801/j.issn.1008-7303.2024.0035
    Citation: LIN Pinxuan, LIU Zhaoyu, PENG Yuxuan, SONG Xinyu, WANG Lixiang, GAO Congfen, WU Shunfan. Advances in chordotonal organ transient receptor potential vanilloid channel modulators that interfere with reproductive behaviour of pests[J]. Chinese Journal of Pesticide Science, 2024, 26(2): 246-256. DOI: 10.16801/j.issn.1008-7303.2024.0035

    干扰害虫生殖行为的弦音器瞬时感受器电位香草酸通道调节剂研究进展

    Advances in chordotonal organ transient receptor potential vanilloid channel modulators that interfere with reproductive behaviour of pests

    • 摘要: 瞬时感受器电位(transient receptor potential, TRP)通道是细胞膜上一类重要的阳离子通道,参与昆虫视觉、嗅觉、听觉、温度感知及机械感知等感觉功能的形成。其中瞬时感受器电位香草酸 (transient receptor potential vanilloid,TRPV) 通道为TRP家族中的一类亚家族,其成员nanchung (Nan) 和inactive (Iav) 基因所编码的蛋白复合物是杀虫剂吡蚜酮、双丙环虫酯以及氟喹酮的分子靶标。研究表明,TRPV通道调节剂类药剂的作用机制不同于传统的神经毒性杀虫剂。如吡蚜酮和氟喹酮会抑制桃蚜Myzus persicae的取食行为;吡蚜酮通过作用于昆虫的弦音感受器,使东亚飞蝗Locusta migratori表现出后足抬起并伸展的独特中毒症状;吡蚜酮和氟喹酮能影响黑腹果蝇Drosophila melanogaster的重力感受和听觉感受,破坏其正常的负趋地性行为;吡蚜酮能够干扰褐飞虱Nilaparvata lugens和黑腹果蝇的生殖行为,有效抑制其下一代种群数量,从而表现出持效期长的特点。我国褐飞虱田间种群已对吡蚜酮普遍产生中等到高水平抗性,白背飞虱Sogatella furcifera和灰飞虱Laodelphax striatellu对吡蚜酮的抗性水平虽然较低,但也呈逐年升高趋势;烟粉虱Bemisia tabaci对吡蚜酮和双丙环虫酯的抗性水平相对较低。细胞色素P450家族成员CYP6CS1、CYP6CM1CYP6CW1等参与了现阶段害虫对吡蚜酮的代谢抗性,但还未发现害虫对TRPV通道调节剂的靶标抗性。本文主要从TRPV通道调节剂的发现、毒理学机制、抗性现状、抗性机制及抗性适合度代价等方面的研究进展进行了系统阐述,可为该类药剂的深入研究及科学使用提供参考。

       

      Abstract: Transient receptor potential (TRP) channels are a class of important cation channels on the cell membrane that participate in the formation of sensory functions such as insect vision, olfaction, temperature perception, hearing, and mechanical sensation. The transient receptor potential vanilloid (TRPV) channels constitute a subfamily within the TRP family, with the protein complex encoded by the nanchung (Nan) and inactive (Iav) genes serving as molecular targets for insecticides such as pymetrozine, afidopyropen, and prifluquinazon. Studies have shown that the mechanism of action of TRPV channel modulators differs from traditional neuroactive insecticides, for example, pymetrozine and prifluquinazon inhibit the feeding behavior of Myzus persicae, pymetrozine induces unique poisoning symptoms in Locusta migratoria by acting on the chordotonal organs of insects, causing the hindlegs to lift and stretch, pymetrozine and prifluquinazon affect the gravity and auditory sensation of Drosophila melanogaster, disrupting its normal negative geotaxis behavior, pymetrozine interferes with the reproductive behavior of Nilaparvata lugens and Drosophila melanogaster, effectively inhibiting the population size of their offspring, thus exhibiting a prolonged efficacy. Field populations of N. lugens in China have developed moderate to high levels of resistance to pymetrozine, while resistance levels in Sogatella furcifera and Laodelphax striatellus are lower but increasing annually; Bemisia tabaci exhibits relatively low resistance levels to pymetrozine and afidopyropen Members of the cytochrome P450 family such as CYP6CS1, CYP6CM1 and CYP6CW1 were involved in metabolic resistance of current pests to pymetrozine. However, resistance to the targets of TRPV channel modulators in pests has not yet been identified. This paper systematically elaborates on the discovery, toxicological mechanism, resistance status, fitness costs, and resistance mechanism of TRPV channel modulators, this can provide reference for the in-depth research and scientific use of this class of compounds.

       

    /

    返回文章
    返回