• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

昆虫对拟除虫菊酯类杀虫剂的代谢抗性机制研究进展

陈澄宇 史雪岩 髙希武

陈澄宇, 史雪岩, 髙希武. 昆虫对拟除虫菊酯类杀虫剂的代谢抗性机制研究进展[J]. 农药学学报, 2016, 18(5): 545-555. doi: 10.16801/j.issn.1008-7303.2016.0078
引用本文: 陈澄宇, 史雪岩, 髙希武. 昆虫对拟除虫菊酯类杀虫剂的代谢抗性机制研究进展[J]. 农药学学报, 2016, 18(5): 545-555. doi: 10.16801/j.issn.1008-7303.2016.0078
CHEN Chengyu, SHI Xueyan, GAO Xiwu. Mechanism of insect metabolic resistance to pyrethroid insecticides[J]. Chinese Journal of Pesticide Science, 2016, 18(5): 545-555. doi: 10.16801/j.issn.1008-7303.2016.0078
Citation: CHEN Chengyu, SHI Xueyan, GAO Xiwu. Mechanism of insect metabolic resistance to pyrethroid insecticides[J]. Chinese Journal of Pesticide Science, 2016, 18(5): 545-555. doi: 10.16801/j.issn.1008-7303.2016.0078

昆虫对拟除虫菊酯类杀虫剂的代谢抗性机制研究进展

doi: 10.16801/j.issn.1008-7303.2016.0078
基金项目: 

公益性行业科技专项(201303027).

Mechanism of insect metabolic resistance to pyrethroid insecticides

  • 摘要: 随着拟除虫菊酯类杀虫剂在卫生和农业害虫防治中的广泛应用,昆虫对此类杀虫剂产生抗性的报道越来越多。目前已明确昆虫对拟除虫菊酯类杀虫剂的抗性机制包括表皮穿透率下降、靶标抗性以及代谢抗性,其中代谢抗性机制较为普遍,而且其与昆虫对多种杀虫剂的交互抗性关系密切。目前,随着基因组、转录组以及蛋白质组学等新技术的发展及应用,昆虫对拟除虫菊酯类杀虫剂的代谢抗性机制研究也取得了很多新进展。昆虫体内细胞色素P450酶(P450s)、羧酸酯酶(CarE)及谷胱甘肽S-转移酶(GSTs)等重要解毒酶系的改变均与昆虫对拟除虫菊酯类杀虫剂的代谢抗性有关,其中这3类解毒酶的活性及相关基因表达量的变化是昆虫对此类杀虫剂产生代谢抗性的主要原因。明确昆虫对拟除虫菊酯类杀虫剂的代谢抗性机制,对合理使用此类杀虫剂及延缓抗药性的产生均具有重要意义。本文在总结拟除虫菊酯类杀虫剂代谢路径及相关生物酶研究概况的基础上,综述了近年来有关昆虫对此类杀虫剂代谢抗性机制研究的主要进展。
  • ARTINEZ-TORRES D, CHEVILLON C, BRUN-BARALE A, et al. Voltage-dependent Na+ channels in pyrethroid-resistant Culex pipiens L. mosquitoes[J]. Pest Manage Sci, 1999, 55(10):1012-1020.
    HARGREAVES K, KOEKEMOER L L, BROOKE B D, et al. Anopheles funestus resistant to pyrethroid insecticides in South Africa[J]. Med Vet Entomol, 2000, 14(2):181-189.
    MUTUNGA J M, ANDERSON T D, CRAFT D T, et al. Carbamate and pyrethroid resistance in the akron strain of Anopheles gambiae[J]. Pestic Biochem Physiol, 2015, 121:116-121.
    JOHNSON B J, FONSECA D M. Insecticide resistance alleles in wetland and residential populations of the West Nile virus vector Culex pipiens in New Jersey[J]. Pest Manage Sci, 2016, 72(3):481-488.
    PALMQUIST K, SALATAS J, FAIRBROTHER A. Pyrethroid insecticides:use, environmental fate, and ecotoxicology[M]//PERVEEN F. Insecticides-advances in integrated pest management. INTECH Open Access Publisher, 2012:251-278.
    LI Y, XU Z F, SHI L, et al. Insecticide resistance monitoring and metabolic mechanism study of the green peach aphid, Myzus persicae (Sulzer)(Hemiptera:Aphididae), in Chongqing, China[J]. Pestic Biochem Physiol, 2015, 132:21-28.
    PANSA M G, BLANDINO M, INGEGNO B L, et al. Toxicity and persistence of three pyrethroids for the control of cereal bugs on common wheat[J]. J Pest Sci, 2015, 88(1):201-208.
    HE L M, TROIANO J, WANG A, et al. Environmental chemistry, ecotoxicity, and fate of lambda-cyhalothrin[M]//WHITACRE D M. Reviews of environmental contamination and toxicology. New York:Springer, 2008:71-91.
    BIONDI A, ZAPPALÀ L, DESNEUX N, et al. Potential toxicity of acypermethrin-treated nets on Tuta absoluta (Lepidoptera:Gelechiidae)[J]. J Econ Entomol, 2015, 108(3):1191-1197.
    SODERLUND D M, CLARK J M, SHEETS L P, et al. Mechanisms of pyrethroid neurotoxicity:implications for cumulative risk assessment[J]. Toxicology, 2002, 171(1):3-59.
    SODERLUND D M. Molecular mechanisms of pyrethroid insecticide neurotoxicity:recent advances[J]. Arch Toxicol, 2012, 86(2):165-181.
    PRIESTER T M, GEORGHIOU G P. Inheritance of resistance to permethrin in Culex pipiens quinquefasciatus[J]. J Econ Entomol, 1979, 72(1):124-127.
    MARTINEZ-TORRES D, CHANDRE F, WILLIAMSON M S, et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s.[J]. Insect Mol Biol, 1998, 7(2):179-184.
    TAN J, LIU Z, TSAI T D, et al. Novel sodium channel gene mutations in Blattella germanica reduce the sensitivity of expressed channels to deltamethrin[J]. Insect Biochem Mol Biol, 2002, 32(4):445-454.
    ZHEN C A, GAO X W. A point mutation (L1015F) of the voltage-sensitive sodium channel gene associated with lambda-cyhalothrin resistance in Apolygus lucorum (Meyer-Dür) population from the transgenic Bt cotton field of China[J]. Pestic Biochem Physiol, 2016, 127:82-89.
    LIU N N. Insecticide resistance in mosquitoes:impact, mechanisms, and research directions[J]. Annu Rev Entomol, 2015, 60:537-559.
    CASIDA J E, RUZO L O. Metabolic chemistry of pyrethroid insecticides[J]. Pest Manage Sci, 1980, 11(2):257-269.
    CASIDA J E, GAMMON D W, GLICKMAN A H, et al. Mechanisms of selective action of pyrethroid insecticides[J]. Annu Rev Pharmacol Toxicol, 1983, 23:413-438.
    WANG X, MARTÍNEZ M A, DAI M H, et al. Permethrin-induced oxidative stress and toxicity and metabolism. a review[J]. Environ Res, 2016, 149:86-104.
    CHOI J, ROSE R L, HODGSON E. In vitro human metabolism of permethrin:the role of human alcohol and aldehyde dehydrogenases[J]. Pestic Biochem Physiol, 2002, 74(3):117-128.
    CROW J A, BORAZJANI A, POTTER P M, et al. Hydrolysis of pyrethroids by human and rat tissues:examination of intestinal, liver and serum carboxylesterases[J]. Toxicol Appl Pharmacol, 2007, 221(1):1-12.
    LESTREMAU F, WILLEMIN M E, CHATELLIER C, et al. Determination of cis-permethrin, trans-permethrin and associated metabolites in rat blood and organs by gas chromatography-ion trap mass spectrometry[J]. Anal Bioanal Chem, 2014, 406(14):3477-3487.
    SCOLLON E J, STARR J M, GODIN S J, et al. In vitro metabolism of pyrethroid pesticides by rat and human hepatic microsomes and cytochrome P450 isoforms[J]. Drug Metab Dispos, 2009, 37(1):221-228.
    GUNNING R V, MOORES G D, DEVONSHIRE A L. Esterases and fenvalerate resistance in a field population of Helicoverpa punctigera (Lepidoptera:Noctuidae) in Australia[J]. Pestic Biochem Physiol, 1997, 58(2):155-162.
    DEMKOVICH M, SIEGEL J P, HIGBEE B S, et al. Mechanism of resistance acquisition and potential associated fitness costs in Amyelois transitella (Lepidoptera:Pyralidae) exposed to pyrethroid insecticides[J]. Environ Entomol, 2015, 44(3):855-863.
    RODRIGUES A R S, SIQUEIRA H A A, TORRES J B. Enzymes mediating resistance to lambda-cyhalothrin in Eriopis connexa (Coleoptera:Coccinellidae)[J]. Pestic Biochem Physiol, 2014, 110:36-43.
    XI J H, PAN Y O, BI R, et al. Elevated expression of esterase and cytochrome P450 are related with lambda-cyhalothrin resistance and lead to cross resistance in Aphis glycines Matsumura[J]. Pestic Biochem Physiol, 2015, 118:77-81.
    EL-LATIF A O A, SUBRAHMANYAM B. Pyrethroid resistance and esterase activity in three strains of the cotton bollworm, Helicoverpa armigera (Hübner)[J]. Pestic Biochem Physiol, 2010, 96(3):155-159.
    WU S W, YANG Y H, YUAN G R, et al. Overexpressed esterases in a fenvalerate resistant strain of the cotton bollworm, Helicoverpa armigera[J]. Insect Biochem Mol Biol, 2011, 41(1):14-21.
    APONTE H A, PENILLA R P, DZUL-MANZANILLA F, et al. The pyrethroid resistance status and mechanisms in Aedes aegypti from the Guerrero state, Mexico[J]. Pestic Biochem Physiol, 2013, 107(2):226-234.
    ROCA-ACEVEDO G, PICOLLO M I, CAPRIOTTI N, et al. Examining mechanisms of pyrethroid resistance in eggs of two populations of the Chagas' disease vector Triatoma infestans (Hemiptera:Reduviidae)[J]. J Med Entomol, 2015, 52(5):987-992.
    THALAVAISUNDARAM S, WILKES M A, MANSFIELD S, et al. Esterases and glutathione S-transferases contribute to pyrethroid resistance in western flower thrips, Frankliniella occidentalis[J]. Aust J Entomol, 2012, 51(4):272-278.
    HEIDARI R, DEVONSHIRE A L, CAMPBELL B E, et al. Hydrolysis of pyrethroids by carboxylesterases from Lucilia cuprina and Drosophila melanogaster with active sites modified by in vitro mutagenesis[J]. Insect Biochem Mol Biol, 2005, 35(6):597-609.
    ZHANG L, SHI J, SHI X Y, et al. Quantitative and qualitative changes of the carboxylesterase associated with beta-cypermethrin resistance in the housefly, Musca domestica (Diptera:Muscidae)[J]. Comp Biochem Physiol Part B, 2010, 156(1):6-11.
    AI G M, ZOU D Y, SHI X Y, et al. HPLC assay for characterizing α-cyano-3-phenoxybenzyl pyrethroids hydrolytic metabolism by Helicoverpa armigera (Hübner) based on the quantitative analysis of 3-phenoxybenzoic acid[J]. J Agric Food Chem, 2009, 58(2):694-701.
    YUAN G, LI Y, FARNSWORTH C A, et al. Isomer-specific comparisons of the hydrolysis of synthetic pyrethroids and their fluorogenic analogues by esterases from the cotton bollworm Helicoverpa armigera[J]. Pestic Biochem Physiol, 2015, 121:102-106.
    RAY D E, FRY J R. A reassessment of the neurotoxicity of pyrethroid insecticides[J]. Pharmacol Ther, 2006, 111(1):174-193.
    YANG Y, WU Y, CHEN S, et al. The involvement of microsomal oxidases in pyrethroid resistance in Helicoverpa armigera from Asia[J]. Insect Biochem Mol Biol, 2004, 34(8):763-773.
    AWOLOLA T S, ODUOLA O A, STRODE C, et al. Evidence of multiple pyrethroid resistance mechanisms in the malaria vector Anopheles gambiae sensu stricto from Nigeria[J]. Trans R Soc Trop Med Hyg, 2009, 103(11):1139-1145.
    ZHONG D B, CHANG X L, ZHOU G F, et al. Relationship between knockdown resistance, metabolic detoxification and organismal resistance to pyrethroids in Anopheles sinensis[J]. PLoS One, 2013, 8(2):e55475.
    AROURI R, LE GOFF G, HEMDEN H, et al. Resistance to lambda-cyhalothrin in Spanish field populations of Ceratitis capitata and metabolic resistance mediated by P450 in a resistant strain[J]. Pest Manage Sci, 2015, 71(9):1281-1291.
    MUTHUSAMY R, SHIVAKUMAR M S. Resistance selection and molecular mechanisms of cypermethrin resistance in red hairy caterpillar (Amsacta albistriga walker)[J]. Pestic Biochem Physiol, 2015, 117:54-61.
    SHI L, ZHANG J, SHEN G M, et al. Silencing NADPH-cytochrome P450 reductase results in reduced acaricide resistance in Tetranychus cinnabarinus (Boisduval)[J]. Sci Rep, 2015, 5:15581.
    NIKOU D, RANSON H, HEMINGWAY J. An adult-specific CYP6 P450 gene is overexpressed in a pyrethroid-resistant strain of the malaria vector, Anopheles gambiae[J]. Gene, 2003, 318:91-102.
    DJOUAKA R F, BAKARE A A, COULIBALY O N, et al. Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s. s. from Southern Benin and Nigeria[J]. BMC Genomics, 2008, 9(1):538.
    MÜLLER P, WARR E, STEVENSON B J, et al. Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids[J]. PLoS Genet, 2008, 4(11):e1000286.
    IBRAHIM S S, RIVERON J M, BIBBY J, et al. Allelic variation of cytochrome P450s drives resistance to bednet insecticides in a major malaria vector[J]. PLoS Genet, 2015, 11(10):e1005618.
    MULAMBA C, RIVERON J M, IBRAHIM S S, et al. Widespread pyrethroid and DDT resistance in the major malaria vector Anopheles funestus in East Africa is driven by metabolic resistance mechanisms[J]. PLoS One, 2014, 9(10):e110058.
    DUSFOUR I, ZORRILLA P, GUIDEZ A, et al. Deltamethrin resistance mechanisms in Aedes aegypti populations from three French overseas territories worldwide[J]. PLoS Negl Trop Dis, 2015, 9(11):e0004226.
    ZHANG H, TANG T, CHENG Y, et al. Cloning and expression of cytochrome P450 CYP6B7 in fenvalerate-resistant and susceptible Helicoverpa armigera (Hübner) from China[J]. J Appl Entomol, 2010, 134(9-10):754-761.
    JOUßEN N, AGNOLET S, LORENZ S, et al. Resistance of Australian Helicoverpa armigera to fenvalerate is due to the chimeric P450 enzyme CYP337B3[J]. Proc Natl Acad Sci USA, 2012, 109(38):15206-15211.
    RASOOL A, JOUßEN N, LORENZ S, et al. An independent occurrence of the chimeric P450 enzyme CYP337B3 of Helicoverpa armigera confers cypermethrin resistance in Pakistan[J]. Insect Biochem Mol Biol, 2014, 53:54-65.
    HAN Y C, YU W T, ZHANG W Q, et al. Variation in P450-mediated fenvalerate resistance levels is not correlated with CYP337B3 genotype in Chinese populations of Helicoverpa armigera[J]. Pestic Biochem Physiol, 2015, 121:129-135.
    ZIMMER C T, BASS C, WILLIAMSON M S, et al. Molecular and functional characterization of CYP6BQ23, a cytochrome P450 conferring resistance to pyrethroids in European populations of pollen beetle, Meligethes aeneus[J]. Insect Biochem Mol Biol, 2014, 45:18-29.
    KONUS M, KOY C, MIKKAT S, et al. Molecular adaptations of Helicoverpa armigera midgut tissue under pyrethroid insecticide stress characterized by differential proteome analysis and enzyme activity assays[J]. Comp Biochem Physiol Part D, 2013, 8(2):152-162.
    SHI L, XU Z F, SHEN G M, et al. Expression characteristics of two novel cytochrome P450 genes involved in fenpropathrin resistance in Tetranychus cinnabarinus (Boisduval)[J]. Pestic Biochem Physiol, 2015, 119:33-41.
    STEVENSON B J, BIBBY J, PIGNATELLI P, et al. Cytochrome P4506M2 from the malaria vector Anopheles gambiae metabolizes pyrethroids:sequential metabolism of deltamethrin revealed[J]. Insect Biochem Mol Biol, 2011, 41(7):492-502.
    PRAPANTHADARA L, RANSON H, SOMBOON P, et al. Cloning, expression and characterization of an insect class I glutathione S-transferase from Anopheles dirus species B[J]. Insect Biochem Mol Biol, 1998, 28(5-6):321-329.
    BUTLER R N, BUTLER W J, MORABY Z, et al. Glutathione concentrations and glutathione S-transferase activity in human colonic neoplasms[J]. J Gastroenterol Hepatol, 1994, 9(1):60-63.
    REIDY G F, ROSE H A, VISETSON S, et al. Increased glutathione S-transferase activity and glutathione content in an insecticide-resistant strain of Tribolium castaneum (Herbst)[J]. Pestic Biochem Physiol, 1990, 36(3):269-276.
    MORGAN J C, IRVING H, OKEDI L M, et al. Pyrethroid resistance in an Anopheles funestus population from Uganda[J]. PLoS One, 2010, 5(7):e11872.
    ADEYI A O, AKOZI G O, ADELEKE M A, et al. Induction and activity of glutathione S-transferases extracted from Zonocerus variegatus (Orthoptera:Pyrgomorphidae) exposed to insecticides[J]. Int J Trop Insect Sci, 2015, 35(1):27-33.
    SILVA W M, BERGER M, BASS C, et al. Status of pyrethroid resistance and mechanisms in Brazilian populations of Tuta absoluta[J]. Pestic Biochem Physiol, 2015, 122:8-14.
    NANDI A, SINGH H, SINGH N K. Esterase and glutathione S-transferase levels associated with synthetic pyrethroid resistance in Hyalomma anatolicum and Rhipicephalus microplus ticks from Punjab, India[J]. Exp Appl Acarol, 2015, 66(1):141-157.
    RANSON H, PRAPANTHADARA L, HEMINGWAY J. Cloning and characterization of two glutathione S-transferases from a DDT-resistant strain of Anopheles gambiae[J]. Biochem J, 1997, 324(Pt 1):97-102.
    GRANT D F, MATSUMURA F. Glutathione S-transferase 1 and 2 in susceptible and insecticide resistant Aedes aegypti[J]. Pestic Biochem Physiol, 1989, 33(2):132-143.
    VONTAS J G, SMALL G J, HEMINGWAY J. Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens[J]. Biochem J, 2001, 357(Pt 1):65-72.
    KOSTAROPOULOS I, PAPADOPOULOS A I, METAXAKIS A, et al. Glutathione S-transferase in the defence against pyrethroids in insects[J]. Insect Biochem Mol Biol, 2001, 31(4-5):313-319.
    DAVID J P, STRODE C, VONTAS J, et al. The Anopheles gambiae detoxification chip:a highly specific microarray to study metabolic-based insecticide resistance in malaria vectors[J]. Proc Natl Acad Sci USA, 2005, 102(11):4080-4084.
    SAMRA A I, KAMITA S G, YAO H W, et al. Cloning and characterization of two glutathione S-transferases from pyrethroid-resistant Culex pipiens[J]. Pest Manage Sci, 2012, 68(5):764-772.
    ZHOU L, FANG S M, HUANG K, et al. Characterization of an epsilon-class glutathione S-transferase involved in tolerance in the silkworm larvae after long term exposure to insecticides[J]. Ecotoxicol Environ Saf, 2015, 120:20-26
  • 加载中
计量
  • 文章访问数:  1569
  • HTML全文浏览量:  138
  • PDF下载量:  287
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-19
  • 修回日期:  2016-09-02
  • 刊出日期:  2016-10-14

目录

    /

    返回文章
    返回