Research progress on spray drift of droplets of plant protection machainery
-
摘要: 中国农药产品80%以上通过喷雾方式施用,药液从喷头到靶标作物过程中产生的随风飘移和蒸发飘移是农药造成人畜健康风险、生态环境破坏的重要因素之一。随着航空施药技术的发展,解决或减少喷雾雾滴飘移的问题成为施药技术研究的重点和热点。基于此,本文分别从喷雾雾滴 (尺寸分布、黏度、表面张力、蒸气压、挥发性、密度等)、喷雾模式 (喷头类型、喷雾速度和高度、喷施方法) 和外界条件 (风速、风向、温度、湿度、气流等环境条件和操作人员技术水平等) 等方面系统分析了产生雾滴飘移的主要原因;同时详细综述了采用田间试验、室内试验、计算机模拟及新型测试技术测定喷雾雾滴飘移的优点及局限性,针对植保无人飞机施药,提出应通过室内测定、田间试验与计算机模拟相结合的方式开展雾滴飘移研究。在此基础上分析并总结了从改变雾滴的运动方式、理化性质等方面直接控制和从田间布局间接控制的喷雾雾滴飘移风险控制技术。Abstract: More than 80% of pesticide formulations are used in plant protection by spraying in China. The spraying drift, including wind drift and evaporation drift, caused by the spraying liquid from the nozzle to the target crop is one of the important factors that pesticides cause human and animal health risks and ecological damage. With the pesticide application technology system shifting from grounded-based application to ground-based and aviation application in China, spray drift has become the focus and hot spot of application technology research. In order to better understand the spray drift, including spray droplets (size distribution, viscosity, surface tension, vapor pressure, volatility, density, etc.), spray pattern(nozzle type, spray speed and height, spray method) and external conditions(wind speed, wind direction, temperature, humidity, airflow and operator technical level, etc.) are systematically analyzed in this article. Meanwhile, the advantages and shortcomings of spray drift determination methods like field tests, indoor tests, computer simulation and new testing techniques are reviewed in detail, and proposed that the study of spray drift for plant protection unmanned aerial vehicle should be carried out combining indoor determination, field tests and computer simulation together. Furthermore, the risk control techniques of spray drift are analyzed and summarized, which are directly controlled by changing the movement mode and physicochemical properties of spray droplets and indirectly controlled by field layout.
-
图 12 搭建不同收集线的风洞试验系统原理图[56]
注:在距离喷头2.0 m、风洞地面0.1 m的位置处间隔0.1 m垂直排列5根收集线(V1 ~ V5),用于采集喷雾云在垂直方向上的的沉积情况。 5根收集线分别距喷头0.5、0.4、0.3、0.2和0.1 m处。5根水平收集线(H1~H5)沿水平方向排列放置在距离喷头的2、3、4 、5和6 m处。
Figure 12. Wind tunnel measuring layout chart with different collector lines[56]
Note: Five collector lines (V1-V5) were positioned in a vertical array to sample vertical profile of airborne spray cloud, at 0.1 m spacing, 2.0 m downwind from static nozzle. This corresponds to nozzle heights of 0.5, 0.4, 0.3, 0.2 and 0.1 m. Five horizontal collecting – identified as H1-H5 were placed in a horizontal array at distances of respectively 2, 3, 4, 5 and 6 m.
-
[1] 闫晓静, 杨代斌, 薛新宇, 等. 中国农药应用工艺学20年的理论研究与技术概述[J]. 农药学学报, 2019, 21(Z1): 908-920.YAN X J, YANG D B, XUE X Y, et al. Overview in theories and technologies for pesticide application in China during the last two decades[J]. Chin J Pestic Sci, 2019, 21(Z1): 908-920. [2] VAN DEN BERG F, KUBIAK R, BENJEY W G, et al. Emission of pesticides into the air[J]. Water Air Soil Pollut, 1999, 115(1-4): 195-218. [3] YATES W E, AKESSON N B, BAYER D. Effects of spray adjuvants on drift hazards[J]. Trans ASAE, 1976, 19(1): 41-46. doi: 10.13031/2013.35963 [4] HILZ E, VERMEER A W P. Spray drift review: The extent to which a formulation can contribute to spray drift reduction[J]. Crop Prot, 2013, 44: 75-83. doi: 10.1016/j.cropro.2012.10.020 [5] 郭永旺, 闫晓静, 兰玉彬. 农业航空植保技术应用指南 [M]. 北京: 中国农业出版社, 2020.GUO Y W, YAN X J, LAN Y B, et al. Guide for application technology of agricultural aviation in plant protection [M]. Beijing: China Agriculture Press, 2020. [6] 袁会珠, 薛新宇, 闫晓静, 等. 植保无人飞机低空低容量喷雾技术应用与展望[J]. 植物保护, 2018, 44(5): 152-158.YUAN H Z, XUE X Y, YAN X J, et al. Applications and prospects in the unmannde areial system for low-altitude and low-volume spray in crop protection[J]. Plant Prot, 2018, 44(5): 152-158. [7] 袁会珠, 郭永旺, 薛新宇, 等. 植保无人飞机的推广应用对于提高我国农药利用率的作用[J]. 农业工程技术, 2018, 38(9): 46-50.YUAN H Z, GUO Y W, XUE X Y, et al. Pesticide efficiency and the way to optimize the spray application plant protection[J]. Agric Eng Technol, 2018, 38(9): 46-50. [8] 王潇楠. 农药雾滴飘移及减飘方法研究 [D]. 北京: 中国农业大学, 2017.WANG X N. Study on spray drift and anti-drift method [D]. Beijing: China Agricultural University, 2017. [9] BROWN C R, GILES D K. Measurement of pesticide drift from unmanned aerial vehicle application to a vineyard[J]. Trans ASABE, 2018, 61(5): 1539-1546. doi: 10.13031/trans.12672 [10] WANG J, LAN Y B, ZHANG H H, et al. Drift and deposition of pesticide applied by UAV on pineapple plants under different meteorological conditions[J]. Int J Agric Biol Eng, 2018, 11(6): 5-12. doi: 10.25165/j.ijabe.20181106.4038 [11] 闫晓静, 石鑫, 刘晓慧, 等. 多旋翼植保无人机喷施新烟碱类杀虫剂对蜜蜂的飘移风险[J]. 植物保护学报, 2021, 48(3): 477-482.YAN X J, SHI X, LIU X H, et al. The spray drift risk of plant protection unmanned aerial vehicle (UAV) spraying neonicotinoid pesticides to honey bees[J]. J Plant Prot, 2021, 48(3): 477-482. [12] ISO22856. Equipment for crop protection-Laboratory measurement of spray drift-Part 1: wind tunnel [S]. 2008. [13] GIL Y, SINFORT C. Emission of pesticides to the air during sprayer application: a bibliographic review[J]. Atmos Environ, 2005, 39(28): 5183-5193. doi: 10.1016/j.atmosenv.2005.05.019 [14] FELSOT A S, UNSWORTH J B, LINDERS J, et al. Agrochemical spray drift; assessment and mitigation—a review[J]. J Environ Sci Heal B, 2010, 46(1): 1-23. [15] HEIDARY M A, DOUZALS J P, SINFORT C, et al. Influence of spray characteristics on potential spray drift of field crop sprayers: a literature review[J]. Crop Prot, 2014, 63(5): 120-130. [16] DE SCHAMPHELEIRE M, SPANOGHE P, BRUSSELMAN E, et al. Risk assessment of pesticide spray drift damage in Belgium[J]. Crop Prot, 2007, 26(4): 602-611. doi: 10.1016/j.cropro.2006.05.013 [17] 曾爱军. 减少农药雾滴飘移的技术研究[D]. 北京: 中国农业大学, 2005.ZENG A J. Research on technique to reduce spray droplets drift[D]. Beijing: China Agricultural University, 2005. [18] 顾伯平. 物理学教程[M]. 3版. 北京: 高等教育出版社, 2016: 51.GU B P. Physics course[M]. 3rd edition. Beijing: Higher Education Press, 2016: 51. [19] 章新友. 全国普通高等医学院校药学类专业十三五规划教材 物理学[M]. 北京: 高等教育出版社, 2016: 103.ZHANG X Y. Textbook of the 13th Five-Year Plan for Pharmaceutical Specialty of National General Medical College-physics[M]. Beijing: Higher Education Press, 2016: 103. [20] ZIVAN O, BOHBOT-RAVIV Y, DUBOWSKI Y. Primary and secondary pesticide drift profiles from a peach orchard[J]. Chemosphere, 2017, 177: 303-310. doi: 10.1016/j.chemosphere.2017.03.014 [21] STAINIER C, DESTAIN M F, SCHIFFERS B, et al. Droplet size spectra and drift effect of two phenmedipham formulations and four adjuvants mixtures[J]. Crop Prot, 2006, 25(12): 1238-1243. doi: 10.1016/j.cropro.2006.03.006 [22] REICHENBERGER S, BACH M, SKITSCHAK A, et al. Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness; A review[J]. Sci Total Environ, 2007, 384(1-3): 31-35. [23] NUYTTENS D, BAETENS K, De SCHAMPHELEIRE M, et al. Effect of nozzle type, size and pressure on spray droplet characteristics[J]. Biosyst Eng, 2007, 97(3): 333-345. doi: 10.1016/j.biosystemseng.2007.03.001 [24] DE COCK N D, MASSINON M, SALAH S O T, et al. Investigation on optimal spray properties for ground based agricultural applications using deposition and retention models[J]. Biosyst Eng, 2017, 162: 99-111. doi: 10.1016/j.biosystemseng.2017.08.001 [25] CHEN S D, LAN Y B, ZHOU Z Y, et al. Effect of droplet size parameters on droplet deposition and drift of aerial spraying by using plant protection UAV[J]. Agronomy, 2020, 10(2): 195-210. doi: 10.3390/agronomy10020195 [26] 包瑞, 茹煜, 朱传银, 等. 固定翼飞机喷雾作业雾滴飘移规律研究[J]. 林业工程学报, 2018, 3(2): 129-135.BAO R, RU Y, ZHU C Y, et al. Study on spray droplet drift pattern based on fixed-wing aircraft[J]. J For Eng, 2018, 3(2): 129-135. [27] NUYTTENS D, TAYLOR W A, De SCHAMPHELEIRE M, et al. Influence of nozzle type and size on drift potential by means of different wind tunnel evaluation methods[J]. Biosyst Eng, 2009, 103(3): 271-280. doi: 10.1016/j.biosystemseng.2009.04.001 [28] MILLER P C H, TUCK C R, MURPHY S, et al. Measurements of the droplet velocities in sprays produced by different designs of agricultural spray nozzle [R]. Italy: ILASS Europe, 2008. [29] 高赛超. 植保无人飞机喷雾助剂评价方法研究与应用 [D]. 北京: 中国农业科学院, 2019.GAO S C. Study on evaluation method and application of adjuvants for unmanned aerial vehicle spray[D]. Beijing: Chinese Academy of Agricultural Science, 2019. [30] CELEN I H. The effect of spray mix adjuvants on spray drift[J]. Bulgarian Journal of Agricultural Science, 2010, 16(1): 105-110. [31] 王军锋, 罗博韬, 霍元平, 等. 助剂影响大载荷植保无人机喷洒沉积特性的试验研究[J]. 排灌机械工程学报, 2019, 37(12): 1044-1049.WANG J F, LUO B T, HUO Y P, et al. Influence of adjuvant on Large-scale Plant Protection UAV spray characteristics[J]. J Drainage Irrigation Mach Eng[J], 2019, 37(12): 1044-1049. [32] HILZ E, VERMEER A V P, LEERMAKERS F A M, et al. Spray drift: How emulsions influence the performance of agricultural sprays produced through a conventional flat fan nozzle[J]. Aspects Appl Biol, 2012, 114(10): 71-78. [33] TORRENT X, GARCERÁ C, MOLTÓ E, et al. Comparison between standard and drift reducing nozzles for pesticide application in citrus: Part I. Effects on wind tunnel and field spray drift[J]. Crop Prot, 2017, 96: 130-143. doi: 10.1016/j.cropro.2017.02.001 [34] FOQUÉ D, BRAEKMAN P, PIETERS J G, et al. A vertical spray boom application technique for conical bay laurel (Laurus nobilis) plants - ScienceDirect[J]. Crop Prot, 2012, 41(6): 113-121. [35] ZHAO H Y, XIE C, LIU F M, et al. Effects of sprayers and nozzles on spray drift and terminal residues of imidacloprid on wheat[J]. Crop Prot, 2014, 60: 78-82. doi: 10.1016/j.cropro.2014.02.009 [36] BALSARI P, GIL E, MARUCCO P, et al. Field-crop-sprayer potential drift measured using test bench: Effects of boom height and nozzle type[J]. Biosyst Eng, 2017, 154: 3-13. doi: 10.1016/j.biosystemseng.2016.10.015 [37] 文晟, 韩杰, 兰玉彬, 等. 单旋翼植保无人机翼尖涡流对雾滴飘移的影响[J]. 农业机械学报, 2018, 49(8): 127-137. doi: 10.6041/j.issn.1000-1298.2018.08.015WEN S, HAN J, LAN Y B, et al. Influence of wing tip Vortex on drift of single rotor plant protection unmanned aerial vehicle[J]. Trans Chin Soc Agric Mach, 2018, 49(8): 127-137. doi: 10.6041/j.issn.1000-1298.2018.08.015 [38] MILLER D R, STOUGHTON T E, STEINKE W E, et al. Atmospheric stability effects on pesticide drift from an irrigated orchard[J]. Trans ASAE, 2000, 43(5): 1057-1066. doi: 10.13031/2013.2998 [39] 贾卫东, 申彬, 周慧涛, 等. 不同侧风和风幕风速对风幕式喷杆喷雾飘移的影响[J]. 农机化研究, 2018, 40(7): 62-67. doi: 10.3969/j.issn.1003-188X.2018.07.011JIA W D, SHEN B, ZHOU H T, et al. Influence of different crosswind and assist airflow speed on drift of air-assist boom sprayer[J]. J Agric Mech Res, 2018, 40(7): 62-67. doi: 10.3969/j.issn.1003-188X.2018.07.011 [40] THISTLE H W. Meteorological concepts in the drift of pesticide [R]. [41] 周淑贞, 张如一, 张超. 气象学与气候学[M]. 3版. 北京: 高等教育出版社, 2004.ZHOU S Z, ZHANG R Y, ZHANG C. Meteorology and Climatology[M]. 3rd edition. Beijing: Higher Education Press, 2004. [42] LUDWIG F L, DABBERDT W F. Comparison of two practical atmospheric stability classification schemes in an urban application[J]. J Appl Meteor, 1976, 15(11): 1172-1176. doi: 10.1175/1520-0450(1976)015<1172:COTPAS>2.0.CO;2 [43] 范小博, 邓巍, 吴桂芳. 飘移控制喷雾施药技术研究进展 [J]. 农机化研究, 2016, 38(6): 1-9.FAN X B, DENG W, WU G F. Research progress of spray drift control technology[J]. J Agric Mech Res, 2016, 38(6): 1-9. [44] 王国宾, 李烜, John Andaloro, 等. 田间农药雾滴精准采样技术与发展趋势 [J]. 农业工程学报, 2021, 37(11): 1-12.WANG G B, LI X, ANDALORO J, et al. Current status and prospects of precise sampling of pesticide droplets [J]. Trans Chin Soc Agric Eng, 2021, 37(11): 1-12. (in Chinese) [45] MAYBANK J, YOSHIDA K, GROVER R. Spray Drift from agricultural pesticide applications[J]. J Air Pollut Control Assoc, 1978, 28(10): 1009-1014. doi: 10.1080/00022470.1978.10470699 [46] BUENO M R, DA CUNHA J P A R, DE SANTANA D G. Assessment of spray drift from pesticide applications in soybean crops[J]. Biosyst Eng, 2017, 154: 35-45. [47] 姚伟祥, 兰玉彬, 王娟, 等. AS350B3e直升机航空喷施雾滴飘移分布特性[J]. 农业工程学报, 2017, 33(22): 75-83.YAO W X, LAN Y B, WANG J, et al. Droplet drift characteristics of aerial spraying of AS350B3e helicopter[J]. Trans Chin Soc Agric Eng, 2017, 33(22): 75-83. [48] 徐少卿, 宋坚利, 王士林, 等. 多旋翼植保无人飞机水稻飞防中的农药飘移和施药人员暴露[J]. 农药学学报, 2020, 22(6): 1085-1093.XU S Q, SONG J L, WANG S L, et al. Study on droplet drift and applicator exposure in rice flight prevention by multi-rotor plant protection UAV[J]. Chin J Pestic Sci, 2020, 22(6): 1085-1093. [49] 石鑫, 陈奕璇, 杜亚辉, 等. 环境风速及飞行参数对多旋翼植保无人机雾滴飘移特性的影响[J]. 植物保护学报, 2021, 48(3): 546-553.SHI X, CHEN Y X, DU Y H, et al. The influences of wind speed and flight parameters on droplet drift characteristics of multi-rotor plant protection unmanned aerial vehicle[J]. J Plant Prot, 2021, 48(3): 546-553. [50] 王潇楠, 何雄奎, 王昌陵, 等. 油动单旋翼植保无人机雾滴飘移分布特性[J]. 农业工程学报, 2017, 33(1): 117-123. doi: 10.11975/j.issn.1002-6819.2017.01.016WANG X N, HE X K, WANG C L, et al. Spray drift characteristics of fuel powered single-rotor UAV for plant protection[J]. Trans Chin Soc Agric Eng, 2017, 33(1): 117-123. doi: 10.11975/j.issn.1002-6819.2017.01.016 [51] 王志翀, HERBST A, BONDS J, 等. 植保无人机低空低量施药雾滴沉积飘移分布立体测试方法[J]. 农业工程学报, 2020, 36(4): 54-62. doi: 10.11975/j.issn.1002-6819.2020.04.007WANG Z C, HERBST A, BONDS J, et al. Stereoscopic test method for low-altitude and low-volume spraying deposition and drift distribution of plant protection UAV[J]. Trans Chin Soc Agric Eng, 2020, 36(4): 54-62. doi: 10.11975/j.issn.1002-6819.2020.04.007 [52] 李秉华, 王贵启, 李香菊, 等. 农药飘移状况的室内模拟测定[J]. 河北农业科学, 2006, 10(2): 43-46. doi: 10.3969/j.issn.1088-1631.2006.02.011LI B H, WANG G Q, LI X J, et al. Smiulating and measuration of pesticide drift in indoor condition[J]. J Hebei Agric Sci, 2006, 10(2): 43-46. doi: 10.3969/j.issn.1088-1631.2006.02.011 [53] NUYTTENS D, ZWERTVAEGHER I K A, DEKEYSER D. Spray drift assessment of different application techniques using a drift test bench and comparison with other assessment methods[J]. Biosyst Eng, 2017, 154: 14-24. doi: 10.1016/j.biosystemseng.2016.09.013 [54] 曾爱军, 何雄奎, 陈青云, 等. 典型液力喷头在风洞环境中的飘移特性试验与评价[J]. 农业工程学报, 2015, 21(10): 78-81. doi: 10.11975/j.issn.1002-6819.2015.10.011ZENG A J, HE X K, CHEN Q Y, et al. Spray drift potential evaluation of typical nozzles under wind tunnel conditions[J]. Trans Chin Soc Agric Eng, 2015, 21(10): 78-81. doi: 10.11975/j.issn.1002-6819.2015.10.011 [55] 傅泽田. 风洞实验室喷雾飘移试验[J]. 农业工程学报, 1999, 15(1): 109-112. doi: 10.3321/j.issn:1002-6819.1999.01.023FU Z T, QI L J. Wind tunnel spraying drift measurements[J]. Trans Chin Soc Agric Eng, 1999, 15(1): 109-112. doi: 10.3321/j.issn:1002-6819.1999.01.023 [56] 张慧春, DORR G, 郑加强, 等. 喷雾飘移的风洞试验和回归模型[J]. 农业工程学报, 2015, 31(3): 94-100. doi: 10.3969/j.issn.1002-6819.2015.03.013ZHANG H C, DORR G, ZHENG J Q, et al. Wind tunnel experiment and regression model for spray drift[J]. Trans Chin Soc Agric Eng, 2015, 31(3): 94-100. doi: 10.3969/j.issn.1002-6819.2015.03.013 [57] 龚艳, 张晓, 王果, 等. 基于农田环境因子模拟农药雾滴飘移特性[J]. 江苏农业科学, 2018, 46(11): 205-208.GONG Y, ZHANG X, WANG G, et al. Study on drift characteristics of pesticide droplets based on simulating environment factors of farmland[J]. Jiangsu Agric Sci, 2018, 46(11): 205-208. [58] 高赛超, 周晓欣, 秦维彩, 等. 利用风洞评价助剂对杀虫剂航空喷雾雾滴飘移的影响[J]. 应用昆虫学报, 2018, 55(4): 654-658.GAO S C, ZHOU X X, QIN W C, et al. Using a wind tunnel test to evaluate the effect of spray adjuvant on droplet drift during aerial low volume insecticide spraying[J]. Chin J Appl Entomol, 2018, 55(4): 654-658. [59] 张付杰, 冯帅辉, 陈立平, 等. 同尺寸异型喷头潜在飘移特性风洞试验研究[J]. 农机化研究, 2021, 43(11): 157-164. doi: 10.3969/j.issn.1003-188X.2021.11.030ZHANG F J, FENG S H, CHEN L P, et al. Experimental study on the potential drift characteristics of same size nozzles with different structure in wind tunnel[J]. J Agric Mech Res, 2021, 43(11): 157-164. doi: 10.3969/j.issn.1003-188X.2021.11.030 [60] TESKE M E, BARRY J W, THISTLE H W. Environmental Modeling, Vol 2—Computer Methods and Software for Simulating Environmental Pollution and Its Adverse Effects [M]. Southampton, UK: Computational Mechanics Publications, 1994. [61] TESKE M E, BIRD S L, ESTERLY D M, et al. AgDrift (R): A model for estimating near-field spray drift from aerial applications[J]. Environ Toxicol Chem, 2002, 21(3): 659-671. doi: 10.1002/etc.5620210327 [62] FORSTER W A, MERCER G N, SCHOU W C. Spray droplet impaction models and their use within AGDISP software to predict retention[J]. New Zealand Plant Prot , 2012, 65: 85-92. doi: 10.30843/nzpp.2012.65.5393 [63] ZHANG B, TANG Q, CHEN L P, et al. Numerical simulation of spray drift and deposition from a crop spraying aircraft using a CFD approach[J]. Biosyst Eng, 2018, 166: 184-199. doi: 10.1016/j.biosystemseng.2017.11.017 [64] DUGA A T, DELELE M A, RUYSEN K, et al. Development and validation of a 3D CFD model ofdrift and its application to air-assisted orchard sprayers[J]. Biosys Eng, 2017, 154: 62-75. [65] HONG S W, ZHAO L Y, ZHU H P. CFD simulation of pesticide spray from air-assisted sprayers in an apple orchard: Tree deposition and off-target losses[J]. Atmos Environ, 2018, 175: 109-119. doi: 10.1016/j.atmosenv.2017.12.001 [66] HOLTERMAN H J, VAN DE ZAVDE J C, HUIJSMANS J F M, et al. An empirical model based on phenological growth stage for predicting pesticide spray drift in pome fruit orchards[J]. Biosyst Eng, 2017, 154: 46-61. doi: 10.1016/j.biosystemseng.2016.08.016 [67] LEBEAU F, VERSTRAETE A, STAINIER C, et al. RTDrift: A real time model for estimating spray drift from ground applications[J]. Comput Electron Agric, 2011, 77(2): 161-174. [68] ALLWINE K J, THISTLE H W, TESKE M E, et al. The agricultural dispersal-valley drift spray drift modeling system compared with pesticide drift data[J]. Environ Toxicol Chem, 2002, 21(5): 1085-1090. [69] ZHANG X Y, LUO Y Z, GOH K S. Modeling spray drift and runoff-related inputs of pesticides to receiving water[J]. Environ Pollut, 2018, 234: 48-58. doi: 10.1016/j.envpol.2017.11.032 [70] ARNOLD J G, SRINIVASAN R, MUTTIAH R S, et al. Large area hydrologic modeling and assessment part I: Model development[J]. JAWRA J Am Water Resour Assoc, 1998, 34(1): 73-89. doi: 10.1111/j.1752-1688.1998.tb05961.x [71] JIAO L Z, DONG D M, FENG H K, et al. Monitoring spray drift in aerial spray application based on infrared thermal imaging technology[J]. Comput Electron Agric, 2016, 121: 135-140. doi: 10.1016/j.compag.2015.12.006 [72] KIRA O, DUBOWSKI Y, LINKER R. In-situ open path FTIR measurements of the vertical profile of spray drift from air-assisted sprayers[J]. Biosyst Eng, 2018, 169: 32-41. doi: 10.1016/j.biosystemseng.2018.01.010 [73] 王志翀, 何雄奎, 李天, 等. 基于激光成像技术的农药雾滴飘移评价方法研究[J]. 农业工程学报, 2019, 35(9): 73-79. doi: 10.11975/j.issn.1002-6819.2019.09.009WANG Z C, HE X K, LI T, et al. Evaluation method of pesticide droplet drift based on laser imaging[J]. Trans Chin Soc Agric Eng, 2019, 35(9): 73-79. doi: 10.11975/j.issn.1002-6819.2019.09.009 [74] 何勇, 肖舒裴, 方慧, 等. 植保无人机施药喷嘴的发展现状及其施药决策[J]. 农业工程学报, 2018, 34(13): 113-124. doi: 10.11975/j.issn.1002-6819.2018.13.014HE Y, XIAO S P, FANG H, et al. Development situation and spraying decision of spray nozzle for plant protection UAV[J]. Trans Chin Soc Agric Eng, 2018, 34(13): 113-124. doi: 10.11975/j.issn.1002-6819.2018.13.014 [75] CHEN Y Y, HOU C J, TANG Y, et al. An effective spray drift-reducing method for a plant-protection unmanned aerial vehicle[J]. Int J Agric Biol Eng, 2019, 12(5): 14-20. doi: 10.25165/j.ijabe.20191205.4289 [76] FORNASIERO D, MORI N, TIRELLO P, et al. Effect of spray drift reduction techniques on pests and predatory mites in orchards and vineyards[J]. Crop Prot, 2017, 98: 283-292. doi: 10.1016/j.cropro.2017.04.010 [77] CARLSEN S C K, SPLIID N H, SVENSMARK B. Drift of 10 herbicides after tractor spray application. 2. Primary drift (droplet drift)[J]. Chemosphere, 2006, 64(5): 778-786. doi: 10.1016/j.chemosphere.2005.10.060 [78] LONGLEY M, SOTHERTON N W. Measurements of pesticide spray drift deposition into field boundaries and hedgerows: 2. Autumn applications[J]. Environ Toxicol Chem, 1997, 16(2): 173-178. doi: 10.1002/etc.5620160211 [79] VISCHETTI C, CARDINALI A, MONACI E, et al. Measures to reduce pesticide spray drift in a small aquatic ecosystem in vineyard estate[J]. Sci Total Environ, 2008, 389(2-3): 497-502. doi: 10.1016/j.scitotenv.2007.09.019 -