宋伟丰, 韦庆慧, 师正浩, 李志勇, 潘亚清. 反枝苋对氟磺胺草醚的抗性机制代谢组学研究[J]. 农药学学报. DOI: 10.16801/j.issn.1008-7303.2024.0065
    引用本文: 宋伟丰, 韦庆慧, 师正浩, 李志勇, 潘亚清. 反枝苋对氟磺胺草醚的抗性机制代谢组学研究[J]. 农药学学报. DOI: 10.16801/j.issn.1008-7303.2024.0065
    SONG Weifeng, WEI Qinghui, SHI Zhenghao, LI Zhiyong, PAN Yaqing. Study on metabolomic mechanism of resistance of Amaranthus retroflexus L. to fomesafen[J]. Chinese Journal of Pesticide Science. DOI: 10.16801/j.issn.1008-7303.2024.0065
    Citation: SONG Weifeng, WEI Qinghui, SHI Zhenghao, LI Zhiyong, PAN Yaqing. Study on metabolomic mechanism of resistance of Amaranthus retroflexus L. to fomesafen[J]. Chinese Journal of Pesticide Science. DOI: 10.16801/j.issn.1008-7303.2024.0065

    反枝苋对氟磺胺草醚的抗性机制代谢组学研究

    Study on metabolomic mechanism of resistance of Amaranthus retroflexus L. to fomesafen

    • 摘要: 二苯醚类除草剂氟磺胺草醚是防除大豆田杂草反枝苋Amaranthus retroflexus L.的主要除草剂,但黑龙江省大豆田反枝苋对氟磺胺草醚的抗性越来越强,严重影响大豆产量。目前尚无关于反枝苋对氟磺胺草醚抗性机制的代谢组学研究。本研究基于未处理 (CK) 以及氟磺胺草醚处理后反枝苋敏感种群 (SY)、抗性种群 (RY) 的叶组织的代谢谱、主成分分析 (PCA) 和正交偏最小二乘法判别分析 (OPLS-DA) 结果显示,RY组代谢分子表型更贴近于CK组。京都基因与基因组百科全书 (KEGG) 富集分析和拓扑分析结果发现,有3条通路是氟磺胺草醚的主要作用通路,分别是biosynthesis of amino acids (氨基酸的生物合成)、arginine biosynthesis (精氨酸生物合成) 和2-oxocarboxylic acid metabolism (2-羧酸代谢)。CK vs RY和SY vs RY有1条共有的差异通路——degradation of flavonoids (类黄酮的降解),因此,类黄酮的降解可能是RY组抗性的特异性通路。通过支持向量机 (SVM) 分析进一步发现,4-hydroxy-2-oxoglutaric acid (4-羟基2-氧化戊二酸)、citrulline (瓜氨酸) 和L-ornithine (L-鸟氨酸) 是氟磺胺草醚处理后反枝苋产生抗药性的关键代谢物。

       

      Abstract: The diphenyl ether herbicide fomesafen is the main herbicide used to control Amaranthus retroflexus L. in soybean fields. However, the resistance of A. retroflexus to fomesafen in Heilongjiang Province is increasingly, significantly impacting soybean yields. Currently, there is no metabolomics research available on the resistance mechanism of A. retroflexus to fomesafen. In this study, the metabolomics analysis of leaf tissues from the fomesafen sensitive populations (SY) group, resistant populations (RY) group, and untreated (CK) group was performed. Principal Component Analysis (PCA) and Orthogonal Partial Least-squares Discrimination Analysis (OPLS-DA) results showed that the metabolite profile of the sample from RY group was closer to that from CK group. Kyoto Gene and Genome Encyclopedia (KEGG) enrichment analysis and topology analysis revealed that three main pathways are affected by fomesafen: biosynthesis of amino acids, arginine biosynthesis, and 2-oxocarboxylic acid metabolism. CK vs RY and SY vs RY share a common differential pathway: degradation of flavonoids. Therefore, degradation of flavonoids may be a specific pathway contributing to the resistance observed in the RY group. Further analysis using Support Vector Machine (SVM) revealed that 4-hydroxy-2-oxoglutaric acid, citrulline, and L-ornithine are key metabolites involved in conferring resistance of A. retroflexus after fomesafen treatment.

       

    /

    返回文章
    返回