• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机磷类杀虫剂代谢机制研究进展

王志超 康志娇 史雪岩 高希武

王志超, 康志娇, 史雪岩, 高希武. 有机磷类杀虫剂代谢机制研究进展[J]. 农药学学报, 2015, 17(1): 1-14. doi: 10.3969/j.issn.1008-7303.2015.01.01
引用本文: 王志超, 康志娇, 史雪岩, 高希武. 有机磷类杀虫剂代谢机制研究进展[J]. 农药学学报, 2015, 17(1): 1-14. doi: 10.3969/j.issn.1008-7303.2015.01.01
Wang Zhichao, Kang Zhijiao, Shi Xueyan, Gao Xiwu. Research progresses on the metabolic mechanisms of organophosphate insecticides[J]. Chinese Journal of Pesticide Science, 2015, 17(1): 1-14. doi: 10.3969/j.issn.1008-7303.2015.01.01
Citation: Wang Zhichao, Kang Zhijiao, Shi Xueyan, Gao Xiwu. Research progresses on the metabolic mechanisms of organophosphate insecticides[J]. Chinese Journal of Pesticide Science, 2015, 17(1): 1-14. doi: 10.3969/j.issn.1008-7303.2015.01.01

有机磷类杀虫剂代谢机制研究进展

doi: 10.3969/j.issn.1008-7303.2015.01.01
基金项目: 

国家公益性行业(农业)科研专项(201303027).

Research progresses on the metabolic mechanisms of organophosphate insecticides

  • 摘要: 文章对有机磷类杀虫剂代谢机制的研究进展以及昆虫对此类杀虫剂的相关代谢抗性机制进行了总结,阐述了有机磷杀虫剂的生物代谢途径及相关代谢酶系。在生物体中,有机磷类杀虫剂主要发生氧化代谢、水解代谢和轭合代谢等反应。其氧化代谢主要在细胞色素P450酶系(P450s)的催化作用下进行,其中,最重要的氧化反应是硫代有机磷酸酯类杀虫剂氧化脱硫形成生物毒性更高的有机磷氧化物的反应,以及氧化脱芳(烷)基化的反应;有机磷杀虫剂及其氧化产物在生物体内还可发生水解代谢反应,在对氧磷酶PON1等磷酸三酯酶的催化作用下,水解生成低毒性或者无毒的代谢物;有机磷杀虫剂的轭合代谢主要是在谷胱甘肽硫转移酶(GSTs)的催化下进行的。昆虫对有机磷类杀虫剂的代谢抗性与昆虫中参与此类杀虫剂代谢的解毒酶的改变密切相关,其中,与有机磷类杀虫剂代谢相关的P450s基因的过量表达和酶活性增强、丝氨酸水解酯酶的过量表达及基因突变、GSTs基因的过量表达等,均可导致铜绿蝇Lucilia cuprina、桃蚜Myzus persicae等昆虫对二嗪磷和马拉硫磷等有机磷类杀虫剂的代谢抗性。明确有机磷类杀虫剂的结构特点、代谢途径以及昆虫对此类杀虫剂的代谢抗性机制,对掌握有机磷类杀虫剂的毒理学机制,安全有效地使用此类杀虫剂,有效治理害虫对有机磷类杀虫剂的抗药性,以及开发生物选择性好的新型有机磷类杀虫剂,均具有重要意义。
  • Milan J, Melita K, Dejan B, et al. Organophosphate induced delayed polyneuropathy in man: an overview[J]. Clin Neurol Neurosurg, 2011, 113(1): 7-10.
    中华人民共和国农业部公告第322号[Z]. 2003-12-30. The 322nd Announcement of the Ministry of Agriculture of the People's Republic of China[Z]. 2003-12-30.(in Chinese)
    Casida J E, Kathleen A D. Anticholinesterase insecticide retrospective[J]. Chem-Biol Interact, 2013, 203(1): 221-225.
    Ojo J O, Abduliah L, Evans J, et al. Exposure to an organophosphate pesticide, individually or in combination with other Gulf War agents, impairs synaptic integrity and neuronal differentiation, and is accompanied by subtle microvascular injury in a mouse model of Gulf War agent exposure[J]. Neuropathology, 2014, 34(2): 109-127.
    Vismaya, Rajini P S. Oral exposure to the organophosphorus insecticide, monocrotophos induces intestinal dysfunction in rats[J]. Food Chem Toxicol, 2014, 71: 236-243.
    Zhu Bin, Gong Yuxin, Liu Lei, et al. Toxic effects of triazophos on rare minnow(Gobiocypris rarus) embryos and larvae[J]. Chemosphere, 2014, 108: 46-54.
    Forsyth C S, Chanbers J E. Activation and degradation of the phosphorothionate insecticides parathion and EPN by rat brain[J]. Biochem Pharmacol, 1989, 38(10): 1597-1603.
    Burattif F M, Daniello A, Volpe M T, et al. Malathion bioactivation in the human liver: the contribution of different cytochrome P450 isoforms[J]. Drug Metab Dispos, 2005, 33(3): 295-302.
    Costa L G. Current issues in organophosphate toxicology[J]. Clinica Chimica Acta, 2006, 366(1-2): 1-13.
    李劲彤, 杜先林. 有机磷杀虫剂的体内活化与解毒[J]. 中国工业医学杂志, 1999, 12(1): 53-55. Li Jintong, Du Xianlin. The activation and detoxification of organophosphate insecticides in vivo[J]. Chinese J Ind Med, 1999, 12(1): 53-55.(in Chinese)
    Campbell P M, Trott J F, Claudianos C, et al. Biochemistry of esterases associated with organophosphate resistance in Lucilia cuprina with comparisons to putative orthologues in other Diptera[J]. Biochem Gene, 1997, 35(1-2): 17-40.
    Robyn J R, Charles C, Peter M C, et al. Two major classes of target site insensitivity mutations confer resistance to organophosphate and carbamate insecticides[J]. Pestic Biochem Physiol, 2004, 79(3): 84-93.
    周斌芬, 唐振华, 高菊芳. 昆虫代谢抗性的研究进展[J]. 农药, 2008, 47(5): 313-316. Zhou Binfen, Tang Zhenhua, Gao Jufang. Advances in metabolic resistance to insecticides in insects[J]. Pesticedes, 2008, 47(5): 313-316.(in Chinese)
    Costa L G, Toby B C, Clement E F. Paraoxonase(PON1): from toxicology to cardiovascular medicine[J]. Acta Biomed, 2005, 76(S2): 50-57.
    Che-Mendoza A, Penilla R P, Rodríguez D A. Insecticide resistance and glutathione S-transferases in mosquitoes: a review[J]. African J Biotechnol, 2009, 8(8): 1386-1397.
    Hodgson E. In vitro human phase I metabolism of xenobiotics I: pesticides and related compounds used in agriculture and public health[J]. J Biochem Mol Toxicol, 2003, 17(4): 201-206.
    Furnes B, Schlenk D. Extrahepatic metabolism of carbamate and organophosphate thioether compounds by the flavin-containing monooxygenase and cytochrome P450 systems[J]. Drug Metab Dispos, 2005, 33(2): 214-218.
    Lotti M, Moretto A. Organophosphate-induced delayed polyneuropathy[J]. Toxicol Rev, 2005, 24(1): 37-49.
    Mizutani M, Ohta D. Diversification of P450 genes during land plant evolution[J]. Annu Rev Plant Biol, 2010, 61(1): 291-315.
    Leoni C, Buratti F M, Testai E. Fenthion bioactivation by recombinant human CYPs and FMO[J]. Drug Metab Rev, 2006, 38: 100-101.
    Krueger S K, Williams D E. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism[J]. Pharmacol Ther, 2005, 106(3): 357-387.
    Uno Y, Shimizu M, Yamazaki H. Molecular and functional characterization of flavin-containing monooxygenases in cynomolgus macaque[J]. Biochem Pharmacol, 2013, 85(12): 1837-1847.
    Cashman J R, Perotti B Y, Berkman C E, et al. Pharmacokinetics and molecular detoxication[J]. Environ Health Persp, 1996, 104(S1): 23-40.
    Usmani K A, Karoly E D, Hodgson E, et al. In vitro sulfoxidation of thioether compounds by human cytochrome P450 and flavin-containing monooxygenase isoforms with particular reference to the CYP2C subfamily[J]. Drug Metab Dispos, 2004, 32(3): 333-339.
    Vilanova E, Sogorb M A. The role of phosphotriesterases in the detoxication of organophosphorus compounds[J]. Crit Rev Toxicol, 1999, 29(1): 21-57.
    Chambers J E. PON1 multitasks to protect health[J]. Proc Natl Acad Sci USA, 2008, 105(35): 12639-12640.
    Furlong C E. Genetic variability in the cytochrome P450-paraoxonase1(PON1) pathway for detoxication of organophosphorus compounds[J]. J Biochem Mol Toxicol, 2007, 21(4): 197-205.
    Cole T B, Walter B J, Shih D M, et al. Toxicity of chlorpyrifos and chlorpyrifos oxon in a transgenic mouse model of the human paraoxonase(PON1) Q192R polymorphism[J]. Pharmacogen Genomics, 2005, 15(8): 589-598.
    Sogorb M A, Vilanova E. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis[J]. Toxicol Lett, 2002, 128(1-3): 215-228.
    Sogorb M A, Diaz-Aiejo N, Vilanova E, et al. Effect of some metallic cations and organic-compounds on the O-hexyl O-2,5-dichlorophenyl phosphoramidate hydrolyzing activity in hen plasma[J]. Arch Toxicol, 1993, 67(6): 416-421.
    Buratti F M, Leoni C, Testai E. The human metabolism of organophosphorothionate pesticides: consequences for toxicological risk assessment[J]. Journal für Verbraucherschutz und Lebensmittelsicherheit, 2007, 2(1): 37-44.
    Wheelock C E, Shan G M, Ottea J. Overview of carboxylesterases and their role in the metabolism of insecticides[J]. J Pestic Sci,et al. Esterase-based resistance in the tobacco-adapted form of the green peach aphid, Myzus persicae(Sulzer)(hemiptera: Aphididae) in the eastern United States[J]. Arch Insect Biochem Physiol, 2009, 72(2): 105-123.
    Pan Yiou, Guo Hulin, Gao Xiwu. Carboxylesterase activity, cDNA sequence, and gene expression in malathion susceptible and resistant strains of the cotton aphid, Aphis gossypii[J]. Comp Biochem Physiol, Part B, 2009, 152(3): 266-270.
    Cui Feng, Lin Zhe, Wang Hongsheng, et al. Two single mutations commonly cause qualitative change of nonspecific carboxylesterases in insects[J]. Insect Biochem Mol Biol, 2011, 41(1): 1-8.
    Cui F, Qu H, Cong J. Do mosquitoes acquire organophosphate resistance by functional changes in carboxylesterases[J]. FASEB J, 2007, 21(13): 3584-3591.
    Srigiriraju L, Semtner P J, Anderson T D,
    Small G J, Hemingway J. Molecular characterization of the amplied carboxylesterase gene associated with organophosphorus insecticide resistance in the brown plant hopper, Nilaparvata lugens[J]. Insect Mol Biol, 2000, 9(6): 647-653.
    Zhu Yucheng, Gordon L S, Chen Mingshun. Enhanced esterase gene expression and activity in a malathion-resistant strain of the tarnished plant bug, Lygus lineolaris[J]. Insect Biochem Mol Biol, 2004, 34(11): 1175-1186.
    Motoyana N, Kao L R, Lin P T, et al. Dual role of esterases in insecticide resistance in the green rice leafhopper[J]. Pestic Biochem Physiol, 1984, 21(2): 139-147.
    Cao Chuanwang, Zhang Jing, Gao Xiwu, et al. Overexpression of carboxylesterase gene associated with organophosphorus insecticide resistance in cotton aphids, Aphis gossypii(Glover)[J]. Pestic Biochem Physiol, 2008, 90(3): 175-180.
    Reyes M, Collange B, Rault M, et al. Combined detoxification mechanisms and target mutation fail to confer a high level of resistance to organophosphates in Cydia pomonella(L.)(Lepidoptera): Tortricidae[J]. Pest Biochem Physiol, 2011, 99(1): 25-32.
    Bass C, Puinean A M, Zimmer C T, et al. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae[J]. Insect Biochem Mol Biol, 2014, 51: 41-51.
    Ku C C, Chiang F M, Hsin C Y, et al. Glutathione transferase isozymes involved in insecticide resistance of diamondback moth larvae[J]. Pestic Biochem Physiol, 1994, 50(3): 191-197.
    Reidy G F, Rose H A, Viseton S, et al. Increased glutathione S-transferase activity and glutathione content in an insecticide-resistant strain of Tribolium castaneum(Herbs遴稩繛J]弮攠吼i>乐呥扳恴汩幣嬠蝂孩杯杣硨づ扭阠虐荨酹筳荩副癬丼丯扩怾砬稠1990,丠嘳儶丨夳嬩嬺戠269-276.
    Qin G H, Jia M, Liu T, et al. Characterization and functional analysis of four glutathione S-transferases from the migratory locust, Locusta migratoria[J]. PLoS ONE, 2013, 8(3): e58410. doi: 10.1371/journal.pone.0058410.
    Zhou Wenwu, Li Xiwang, Quan Yinhua, et al. Identification and expression profiles of nine glutathione S-transferase genes from the important rice phloem sap-sucker and virus vector Laodelphax striatellus(Fallén)(Hemiptera: Delphacidae)[J]. Pest Manag Sci, 2012, 68(9): 1296-1305.
    Fujioka K, Casida J E. Glutathione S-transferase conjugation of organophosphorus pesticides yields S-phospho-, S-aryl-, and S-alkylglutathione derivatives[J]. Chem Res Toxicol, 2007, 20(8): 1211-1217.
    Lagadic L, Cuany A, Bergé J B, et al. Purification and partial characterization of glutathione S-transferase from insecticide-resistant and lindane-induced susceptible Spodoptera littoralis(Biosd) larvae[J]. Insect Biochem Physiol, 1993, 23(4): 467-474. CW, et al. Organophosphate and pyrethroid hydrolase activities of mutant esterases from the cotton bollworm Helicoverpa armigera[J]. PLOS ONE, 2013, 8(10): e77685.
  • 加载中
计量
  • 文章访问数:  4183
  • HTML全文浏览量:  839
  • PDF下载量:  817
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-24
  • 修回日期:  2014-12-16
  • 刊出日期:  2015-02-07

目录

    /

    返回文章
    返回