Synthesis and fungicidal activity of deuterated pefurazoate
-
摘要: 氘标记农药作为探针或者内标在农药代谢、毒理研究或者农药残留分析中发挥着重要作用。由于动力学同位素效应,C−D键比C−H键更为稳定,因此氘标记农药可能具有更长的半衰期,以及对非靶标生物更小的毒性。稻瘟酯是一种对水稻恶苗病和稻瘟病有良好防治效果的农用杀菌剂。本项研究利用单电子转移还原氘化反应和氘标记中间体,成功合成了4个不同位点被选择性氘代的稻瘟酯,其中3个化合物未见文献报道,并对其进行了杀菌活性测试。离体杀菌活性测试结果显示,上述4种氘代稻瘟酯对水稻稻瘟病菌和水稻恶苗病菌均具有良好的生物活性,与未被标记的稻瘟酯无显著差异。氘标记稻瘟酯未来可作为代谢、毒理研究的探针及农药残留分析中的内标。Abstract: Deuterium labeled agrochemicals have been widely used as probes in the metabolism and toxicology study or internal standards in the agrochemical residue analysis. Because of the primary deuterium kinetic isotope effect, the cleavage of C−D bonds requires higher activation energy than that of C−H bonds. Deuterium labelled agrochemicals may have longer half-lives and reduced toxicity to non-target organism. Pefurazoate has good control effect on rice bakanae disease and rice blast. In this study, four types of deuterated pefurazoate was synthesized using novel sodium dispersions mediated single electron transfer reductive deuterations developed by Jie An’s lab, and three of them were first reported in this work. Their fungicidal activities against Pyricularia oryzae and Gibberella fujikuroi were evaluated, which were comparable to that of the unlabeled pefurazoate. The deuterated pefurazoate can be used as the probe in the metabolism study, the toxicity study or as the MS internal standard in the residue analysis.
-
表 1 目标化合物1a~1d和稻瘟酯的 1H NMR 和 13C NMR
Table 1. 1H NMR and 13C NMR spectra of compounds 1a-1d and pefurazoate
化合物
Compound1H NMR (300 MHz, CDCl3) 13C NMR (75 MHz, CDCl3) 1a 8.13 (s, 1H), 7.49 (m, 1H), 7.45 (m, 1H), 7.11 (m, 1H), 6.38 – 6.33 (m, 2H), 5.78 (m, 1H), 5.08 – 4.92 (m, 2H), 4.72 (d, J = 16.3 Hz, 1H), 4.47 (d, J = 16.3 Hz, 1H), 3.99 (dd, J = 9.4, 5.7 Hz, 1H), 2.19 – 1.89 (m, 4H), 1.72 (t, J = 7.4 Hz, 2H), 0.74 (t, J = 7.5 Hz, 3H). 170.1, 151.4, 148.4, 143.4, 137.2 × 2, 129.3, 118.4, 115.7, 110.7 × 2, 65.1 (m), 62.5, 46.6, 30.0, 27.5, 21.6, 10.8. 1b 8.16 (s, 1H), 7.51 (m, 1H), 7.47 (m, 1H), 7.13 (m, 1H), 6.40 – 6.36 (m, 2H), 4.74 (d, J = 16.2 Hz, 1H), 4.49 (d, J = 16.2 Hz, 1H), 4.01 (dd, J = 9.5, 5.7 Hz, 1H), 2.15 – 1.98 (m, 4H), 1.74 (t, J = 7.4 Hz, 2H), 0.77 (t, J = 7.5 Hz, 3H). 170.2, 151.8, 148.7, 143.3, 137.3, 137.0 (m), 130.2, 118.2, 115.2 (m), 110.7, 110.6, 64.8 (m), 62.4, 46.4, 29.8, 27.6, 21.7, 10.8. 1c 7.47 (m, 1H), 6.40 – 6.35 (m, 2H), 5.80 (m, 1H), 5.08 – 4.97 (m, 2H), 4.74 (d, J = 16.3 Hz, 1H), 4.49 (d, J = 16.3 Hz, 1H), 4.16 (t, J = 6.6 Hz, 2H), 4.01 (dd, J = 9.4, 5.7 Hz, 1H), 2.18 – 1.97 (m, 4H), 1.75 (m, 2H), 0.77 (t, J = 7.5 Hz, 3H). 170.1, 151.7, 148.6, 143.2, 137.1, 137.0 (m), 129.6 (m), 117.8 (m), 115.6, 110.6, 110.5, 65.0, 62.4, 46.3, 29.9, 27.7, 21.6, 10.7. 1d 7.47 (m, 1H), 6.40 – 6.35 (m, 2H), 5.80 (m, 1H), 5.09 – 4.97 (m, 2H), 4.74 (d, J = 16.3 Hz, 1H), 4.49 (d, J = 16.3 Hz, 1H), 4.01 (dd, J = 9.4, 5.7 Hz, 1H), 2.19 – 1.99 (m, 4H), 1.74 (t, J = 7.4 Hz, 2H), 0.77 (t, J = 7.4 Hz, 3H). 170.0, 151.7, 148.6, 143.2, 137.1, 136.8 (m), 129.4 (m), 117.6 (m), 115.5, 110.6, 110.5, 64.6 (m), 62.3, 46.3, 29.9, 27.5, 21.6, 10.7. 稻瘟酯
pefurazoate8.15 (s, 1H), 7.52 (m, 1H), 7.47 (m, 1H), 7.12 (m, 1H), 6.40 – 6.35 (m, 2H), 5.81 (m, 1H), 5.15 – 4.89 (m, 2H), 4.74 (d, J = 16.2 Hz, 1H), 4.49 (d, J = 16.2 Hz, 1H), 4.16 (t, J = 6.5 Hz, 2H), 4.01 (dd, J = 9.4, 5.7 Hz, 1H), 2.25 – 1.99 (m, 4H), 1.81 – 1.70 (m, 2H), 0.76 (t, J = 7.5 Hz, 3H). 169.8, 151.5, 148.4, 143.1, 137.0 × 2, 129.9, 117.9, 115.4, 110.5, 110.4, 64.8, 62.2, 46.2, 29.8, 27.50, 21.4, 10.5. 表 2 氘代稻瘟酯对水稻稻瘟病菌和水稻恶苗病菌的离体活性
Table 2. In vitro antibacterial activity of the deuterated pefurazoate against Pyricularia oryzae and Gibberella fujikuroi
化合物
Compound水稻稻瘟病菌 Pyricularia oryzae 水稻恶苗病菌 Gibberella fujikuroi 回归方程 Regression equation 相关系数 r EC50/(mg/L) 回归方程 Regression equation 相关系数 r EC50/(mg/L) 稻瘟酯 pefurazoate y = 0.801 2x + 4.819 1 0.986 4 1.68 y = 0.849 4x + 5.580 7 0.984 9 0.20 1a y = 0.723 2x + 4.870 6 0.998 0 1.51 y = 1.116 4x + 5.581 8 0.949 2 0.19 1b y = 0.658 8x + 4.848 3 0.995 0 1.70 y = 0.961 8x + 5.718 0 0.963 0 0.18 1c y = 0.813 4x + 4.782 0 0.974 7 1.85 y = 1.073 6x + 5.791 4 0.965 2 0.18 1d y = 0.752 4x + 4.808 0 0.984 9 1.80 y = 1.102 4x + 5.800 0 0.964 4 0.19 -
[1] PIRALI T, SERAFINI M, CARGNIN S, et al. Applications of deuterium in medicinal chemistry[J]. J Med Chem, 2019, 62(11): 5276-5297. doi: 10.1021/acs.jmedchem.8b01808 [2] CHENG T D, SHELVER W L, HONG C C, et al. Urinary excretion of the beta-adrenergic feed additives ractopamine and zilpaterol in breast and lung cancer patients[J]. J Agric Food Chem, 2016, 64(40): 7632-7639. doi: 10.1021/acs.jafc.6b02723 [3] MUTLIB A E. Application of stable isotope-labeled compounds in metabolism and in metabolism-mediated toxicity studies[J]. Chem Res Toxicol, 2008, 21(9): 1672-1689. doi: 10.1021/tx800139z [4] ATZRODT J, DERDAU V, KERR W J, et al. Deuterium- and tritium-labelled compounds: applications in the life sciences[J]. Angew Chem Int Ed Engl, 2018, 57(7): 1758-1784. doi: 10.1002/anie.201704146 [5] KAINO T, JINGUJI K, NARA S. Low loss poly(methylmethacrylate-d8) core optical fibers[J]. Appl Phys Lett, 1983, 42(7): 567-569. doi: 10.1063/1.94030 [6] GANT T G. Using deuterium in drug discovery: leaving the label in the drug[J]. J Med Chem, 2014, 57(9): 3595-3611. doi: 10.1021/jm4007998 [7] DART A. Cancer immunotherapy: Rewiring cancer cells[J]. Nat Rev Drug Discov, 2017, 16(12): 828. [8] KATSNELSON A. Heavy drugs draw heavy interest from pharma backers[J]. Nat Med, 2013, 19(6): 656. doi: 10.1038/nm0613-656 [9] KOIKE Y, KOIKE K. Progress in low-loss and high-bandwidth plastic optical fibers[J]. J Polym Sci Part B: Polym Phys, 2011, 49(1): 2-17. doi: 10.1002/polb.22170 [10] SCHMIDT C. First deuterated drug approved[J]. Nat Biotechnol, 2017, 35(6): 493-494. doi: 10.1038/nbt0617-493 [11] VANDERFORD B J, SNYDER S A. Analysis of pharmaceuticals in water by isotope dilution liquid chromatography/tandem mass spectrometry[J]. Environ Sci Technol, 2006, 40(23): 7312-7320. [12] YANG X J, DU Z X, LIN A J, et al. Simultaneous determination of neutral, basic and acidic pesticides in aquatic environmental matrices by solid-phase extraction and liquid chromatography electrospray ionization mass spectrometry[J]. Analytical Methods, 2013, 5(8): 2083. doi: 10.1039/c3ay26095j [13] FANG K, JIANG Z J, WANG J, et al. Simulation of nonylphenol degradation in leafy vegetables using a deuterated tracer[J]. Environ Sci: Processes Impacts, 2015, 17(7): 1323-1330. doi: 10.1039/C5EM00073D [14] 除草剂残留量检测方法第5部分: 液相色谱-质谱质谱法测定食品中硫代氨基甲酸酯类除草剂残留量: GB 23200.5—2016[S].National food safety standards: determination of thiocarbmate herbicide residues in foods liquid chromatography-mass spectrometry: GB 23200.5—2016[S]. [15] KURIHARA N. Application of deuterium isotope effects to the xenobiotic metabolism study[J]. J Mass Spectrom Soc Jpn, 1998, 46(3): 157-172. doi: 10.5702/massspec.46.157 [16] NGUYEN B C, CHOMPOO J, TAWATA S. Insecticidal and nematicidal activities of novel mimosine derivatives[J]. Molecules, 2015, 20(9): 16741-16756. doi: 10.3390/molecules200916741 [17] ATZRODT J, DERDAU V, FEY T, et al. The renaissance of H/D exchange[J]. Angew Chem Int Ed Engl, 2007, 46(41): 7744-7765. doi: 10.1002/anie.200700039 [18] LOH Y Y, NAGAO K, HOOVER A J, et al. Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds[J]. Science, 2017, 358(6367): 1182-1187. doi: 10.1126/science.aap9674 [19] YU R P, HESK D, RIVERA N, et al. Iron-catalysed tritiation of pharmaceuticals[J]. Nature, 2016, 529(7585): 195-199. doi: 10.1038/nature16464 [20] SCHOFIELD J, DERDAU V, ATZRODT J, et al. Effect of deuteration on metabolism and clearance of Nerispirdine (HP184) and AVE5638[J]. Bioorg Med Chem, 2015, 23(13): 3831-3842. doi: 10.1016/j.bmc.2015.03.065 [21] UPSHUR M A, CHASE H M, STRICK B F, et al. Vibrational mode assignment of alpha-pinene by isotope editing: one down, seventy-one to go[J]. J Phys Chem A, 2016, 120(17): 2684-2690. doi: 10.1021/acs.jpca.6b01995 [22] RODRIGUEZ S, CAMPS F, FABRIAS G. Synthesis of gem-dideuterated tetradecanoic acids and their use in investigating the enzymatic transformation of (Z)-11-tetradecenoic acid into (E,E)-10,12-tetradecadienoic acid[J]. J Org Chem, 2001, 66(24): 8052-8058. doi: 10.1021/jo010560w [23] DING Y, LUO S, ADIJIANG A, et al. Reductive deuteration of nitriles: the synthesis of alpha, alpha-dideuterio amines by sodium-mediated electron transfer reactions[J]. J Org Chem, 2018, 83(19): 12269-12274. doi: 10.1021/acs.joc.8b01730 [24] HAN M, MA X, YAO S, et al. Development of a modified bouveault-blanc reduction for the selective synthesis of alpha, alpha-dideuterio alcohols[J]. J Org Chem, 2017, 82(2): 1285-1290. doi: 10.1021/acs.joc.6b02950 [25] LI H, ZHANG B, DONG Y, et al. A selective and cost-effective method for the reductive deuteration of activated alkenes[J]. Tetrahedron Lett, 2017, 58(28): 2757-2760. doi: 10.1016/j.tetlet.2017.05.092 [26] ZHANG B, LI H, DING Y, et al. Reduction and reductive deuteration of tertiary amides mediated by sodium dispersions with distinct proton donor-dependent chemoselectivity[J]. J Org Chem, 2018, 83(11): 6006-6014. doi: 10.1021/acs.joc.8b00617 [27] HAN M, DING Y, YAN Y, et al. Transition-metal-free, selective reductive deuteration of terminal alkynes with sodium dispersions and EtOD- d1[J]. Org Lett, 2018, 20(10): 3010-3013. doi: 10.1021/acs.orglett.8b01036 [28] WADA T, HIRAMATU M, TAKENAKA M, et al. Development of a new seed disinfectant, pefurazoate[J]. J Pestic Sci, 1999, 24(2): 230-240. doi: 10.1584/jpestics.24.230 [29] TAKENAKA M, SAKAI S, NISHIDA H, et al. Degradation and adsorption of a seed fungicide pefurazoate in paddy soil[J]. J Pestic Sci, 1991, 16(4): 631-639. doi: 10.1584/jpestics.16.631 [30] 农药室内生物测定实验准则杀菌剂第2部分: 抑制病原真菌菌丝生长实验平皿法: NY/T1156. 2—2006[S]. 北京: 中国农业大学出版社, 2006.Pesticides guidelines for laboratory bioactivity tests: Part 2: Petri plate test for determining fungicide inhibition of mycelial growth: NY/T1156. 2—2006[S]. Beijing: China Agriculture Press, 2006. -
氘标记稻瘟酯的合成及其杀菌活性_ 附加材料.pdf
-