徐鹿, 赵钧, 赵春青, 徐德进, 徐广春, 许小龙, 张亚楠, 张月亮, 韩召军, 顾中言. 灰飞虱对杀虫剂的抗性分子机制研究进展[J]. 农药学学报, 2018, 20(2): 135-145. DOI: 10.16801/j.issn.1008-7303.2018.0018
    引用本文: 徐鹿, 赵钧, 赵春青, 徐德进, 徐广春, 许小龙, 张亚楠, 张月亮, 韩召军, 顾中言. 灰飞虱对杀虫剂的抗性分子机制研究进展[J]. 农药学学报, 2018, 20(2): 135-145. DOI: 10.16801/j.issn.1008-7303.2018.0018
    XU Lu, ZHAO Jun, ZHAO Chunqing, XU Dejin, XU Guangchun, XU Xiaolong, ZHANG Ya’nan, ZHANG Yueliang, HAN Zhaojun, GU Zhongyan. Researchprogressinmolecularmechanismsofresistancetoinsecticidesin<italic>Laodelphaxstriatellus</italic>[J]. Chinese Journal of Pesticide Science, 2018, 20(2): 135-145. DOI: 10.16801/j.issn.1008-7303.2018.0018
    Citation: XU Lu, ZHAO Jun, ZHAO Chunqing, XU Dejin, XU Guangchun, XU Xiaolong, ZHANG Ya’nan, ZHANG Yueliang, HAN Zhaojun, GU Zhongyan. Researchprogressinmolecularmechanismsofresistancetoinsecticidesin<italic>Laodelphaxstriatellus</italic>[J]. Chinese Journal of Pesticide Science, 2018, 20(2): 135-145. DOI: 10.16801/j.issn.1008-7303.2018.0018

    灰飞虱对杀虫剂的抗性分子机制研究进展

    Researchprogressinmolecularmechanismsofresistancetoinsecticidesin<italic>Laodelphaxstriatellus</italic>

    • 摘要: 灰飞虱是中国长江流域和黄淮地区重要的农业害虫,由于杀虫剂的广泛与大量使用,已导致其对多种杀虫剂产生了抗性。深入研究其抗药性分子机制,可为灰飞虱抗性的快速检测和治理提供重要理论基础。文章总结了灰飞虱对毒死蜱、吡虫啉、溴氰菊酯、噻嗪酮、氟虫腈和乙虫腈等杀虫剂的抗性分子机制研究进展,主要包括抗性相关解毒酶和转运蛋白基因的筛选与功能验证,以及靶标位点突变等重要研究成果,指出该研究领域当前存在的问题主要有抗性基因的功能验证及调控路径、抗性新基因的鉴定及交互抗性和多重抗性机制不明确等,并展望了其未来发展方向,认为:可利用CRISPR/Cas9基因编辑技术验证抗性基因功能;可将转录组测序结合生物信息学手段用于鉴定新抗性基因及抗性调控基因,以探明交互抗性和多重抗性机制;应深入至蛋白组学水平探讨抗性机制;需开发配套的高效田间施药技术,以达到杀虫剂减施增效的目的。

       

      Abstract: The small brown planthopper, Laodelphax striatellus (Fallén), is an important agricultural pest which causes damage to many food crops in Chinese Yangtze River valley and Huanghuai area. The widespread and mass use of insecticides has led to the evolution of resistance to different type insecticides in L. striatellus. Further study on the molecular mechanism of resistance can provide important theoretical basis for the rapid detection and management of resistance of L. striatellus. This review summarized the research progress of the resistance molecular mechanisms, which are induced by chlorpyrifos, imidacloprid, deltamethrin, buprofezin, fipronil and ethiprole, including the identification and functional verification of resistance detoxification enzyme, transport genes and mutations of the target gene site. The current existing problems in this research area mainly focus on the functional validation and regulation path of resistance genes, the identification of new resistance genes, and the unclear mechanism of cross resistance and multiple resistance. Future development directions are expected including functional verification of resistance genes by CRISPR/Cas9 gene editing technology, the identification of new resistance genes and resistance regulation genes by transcriptome sequencing combined with bioinformatics, conformation of cross resistance and multiple resistance mechanism, proteomics level resistance mechanism study, and efficient field spraying technology to reduce pesticides application and improve efficiency of pesticides.

       

    /

    返回文章
    返回