• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

农药残留检测中不同蔬菜的基质效应

张圆圆 刘磊 李娜 李辉 卢娜 郭永泽 张玉婷

张圆圆, 刘磊, 李娜, 李辉, 卢娜, 郭永泽, 张玉婷. 农药残留检测中不同蔬菜的基质效应[J]. 农药学学报, 2019, 21(3): 327-337. doi: 10.16801/j.issn.1008-7303.2019.0040
引用本文: 张圆圆, 刘磊, 李娜, 李辉, 卢娜, 郭永泽, 张玉婷. 农药残留检测中不同蔬菜的基质效应[J]. 农药学学报, 2019, 21(3): 327-337. doi: 10.16801/j.issn.1008-7303.2019.0040
ZHANG Yuanyuan, LIU Lei, LI Na, LI Hui, LU Na, GUO Yongze, ZHANG Yuting. Matrix effects in pesticide residue analysis in various vegetable samples[J]. Chinese Journal of Pesticide Science, 2019, 21(3): 327-337. doi: 10.16801/j.issn.1008-7303.2019.0040
Citation: ZHANG Yuanyuan, LIU Lei, LI Na, LI Hui, LU Na, GUO Yongze, ZHANG Yuting. Matrix effects in pesticide residue analysis in various vegetable samples[J]. Chinese Journal of Pesticide Science, 2019, 21(3): 327-337. doi: 10.16801/j.issn.1008-7303.2019.0040

农药残留检测中不同蔬菜的基质效应

doi: 10.16801/j.issn.1008-7303.2019.0040
基金项目: 国家重点研发计划 (2016YFD080100703);天津市蔬菜产业体系创新团队 (ITTVRS2017021);天津市重点研发计划项目 (17YFXTZC00040)
详细信息
    作者简介:

    张圆圆,女,硕士,研究实习员,研究方向为农产品质量安全,E-mailzyyzyyok@163.com

    通讯作者:

    张玉婷,通信作者 (Author for correspondence),女,学士,研究员,主要从事农产品质量安全研究,E-mailyutingtj@163.com 

  • 中图分类号:  S481.8;TQ450.263

Matrix effects in pesticide residue analysis in various vegetable samples

  • 摘要: 基于QuEChERS前处理方法,在气相色谱-串联质谱 (GC-MS/MS) 和超高效液相色谱-串联质谱 (UPLC-MS/MS) 检测条件下,考察了200种农药在17种蔬菜基质中的基质效应,通过基质效应分析找到了合适的代表性基质用作配制检测过程中的基质匹配标准溶液。结果表明:由于基质干扰成分及农药性质的差异,导致不同蔬菜及农药品种之间的基质效应差异。在GC-MS/MS检测中,供试的150种农药中绝大部分表现为基质增强效应,其中葱、姜和大蒜表现为很强的基质效应,萝卜的基质效应较弱;菠菜、芹菜、豇豆和生菜4种蔬菜对其他蔬菜品种能够起到很好的基质校正效果,可作为代表性基质在日常检测中用于其他蔬菜基质的定量分析。在UPLC-MS/MS检测中,供试的105种农药中大部分表现为基质抑制效应,其中姜、大蒜、葱、芹菜、韭菜和菠菜的基质效应较强,西葫芦的基质效应弱;黄瓜、普通白菜、番茄和生菜4种蔬菜能较好地校正其他蔬菜的基质效应,但与GC-MS/MS相比校正能力稍弱。本研究结果认为代表性蔬菜基质可用于降低基质效应对检测结果的干扰。
  • 图  1  150种农药在17种蔬菜基质中的基质效应 (GC-MS/MS)

    Figure  1.  Matrix effect of 150 pesticides in 17 vegetables(GC-MS/MS)

    图  2  150种农药在17种蔬菜中的弱、中等和强基质效应数目 (GC-MS/MS)

    Figure  2.  Number of pesticides with weak, medium and strong matrix effects in 17 vegetables(GC-MS/MS)

    图  3  105种农药在17种蔬菜中的基质效应 (UPLC-MS/MS)

    Figure  3.  Matrix Effect of 105 Pesticides in 17 vegetables(UPLC-MS/MS)

    图  4  105种农药在17种蔬菜中的弱、中等和强基质效应数目 (UPLC-MS/MS)

    Figure  4.  Number of pesticides with weak, medium and strong matrix effects in 17 vegetables(UPLC-MS/MS)

    图  5  GC-MS/MS检测中代表性蔬菜作为定量基质时150种供试农药在不同蔬菜品种中的基质效应分布情况

    A. 生菜;B.芹菜;C. 豇豆;D. 菠菜。

    Figure  5.  Matrix effects of different vegetables using typical vegetable as blank matrix(GC-MS/MS)

    A.Lettuce; B. Celery; C. Cowpea; D. Spinach.

    图  6  UPLC-MS/MS检测中代表性蔬菜作为定量基质时105种供试农药在不同蔬菜品种的基质效应分布情况

    A. 生菜;B.黄瓜;C. 普通白菜;D. 番茄。

    Figure  6.  Matrix effects of different vegetables using typical vegetable as blank matrix (UPLC-MS/MS)

    A. Lettuce; B. Cucumber; C. Chinese cabbage; D. Tomato.

    表  1  供试200种农药及其检测仪器

    Table  1.   200 pesticides and the equipment for their detection

    序号
    No.
    农药
    Pesticide
    仪器*
    Equipment
    序号
    No.
    农药
    Pesticide
    仪器*
    Equipment
    1 乙酰甲胺磷 acephate LC 101 异稻瘟净 iprobenfos GC
    2 乙草胺 acetochlor LC + GC 102 异菌脲 iprodione LC + GC
    3 氟丙菊酯 acrinathrin GC 103 氯唑磷 isazofos LC + GC
    4 甲草胺 alachlor LC + GC 104 水胺硫磷 isocarbophos GC
    5 艾氏剂 aldrin GC 105 异柳磷 isofenphos GC
    6 莠灭净 ametryn LC 106 氧异柳磷 isofenphos oxon GC
    7 苯胺 aniline GC 107 甲基异柳磷 isofenphos-methyl GC
    8 阿特拉通 atraton GC 108 稻瘟灵 isoprothiolane GC
    9 莠去津 atrazine LC + GC 109 异唑磷 isoxathion LC
    10 脱乙基莠去津 atrazine-desethyl LC 110 醚菌酯 kresoxim-methyl GC
    11 益棉磷 azinphos-ethyl LC 111 马拉硫磷 malathion LC
    12 嘧菌酯 azoxystrobin LC + GC 112 灭蚜磷 mecarbam GC
    13 氟丁酰草胺 beflubutamid GC 113 苯噻草胺 mefenacet LC + GC
    14 苯霜灵 benalaxyl LC + GC 114 甲霜灵 metalaxyl LC + GC
    15 氟草胺 benfluralin GC 115 虫螨畏 methacrifos GC
    16 α-六六六 α-HCH GC 116 甲胺磷 methamidophos LC
    17 β-六六六 β-HCH GC 117 杀扑磷 methidathion LC
    18 δ-六六六 δ-HCH GC 118 烯虫酯 methoprene GC
    19 联苯菊酯 bifenthrin LC + GC 119 盖草津 methoprotryne GC
    20 联苯菊酯 biphenyl GC 120 异丙甲草胺 metolachlor LC + GC
    21 联苯三唑醇 bitertanol LC 121 速灭磷 mevinphos GC
    22 啶酰菌胺 boscalid GC 122 草达灭 molinate LC + GC
    23 除草定 bromacil LC 123 久效磷 monocrotophos LC
    24 溴硫磷 bromophos-ethyl GC 124 腈菌唑 myclobutanil LC
    25 溴螨酯 bromopropylate GC 125 敌草胺 napropamide LC + GC
    26 乙嘧酚磺酸酯 bupirimate GC 126 除草醚 nitrofen GC
    27 丁草胺 butachlor LC + GC 127 三氯杀螨醇 dicofol GC
    28 克百威 carbofuran LC + GC 128 氧乐果 omethoate LC
    29 萎锈灵 carboxin LC 129 草灵 oxadiazon GC
    30 反式氯丹 trans-chlordane GC 130 霜灵 oxadixyl LC + GC
    31 杀虫脒 chlordimeform GC 131 乙氧氟草醚 oxyfluorfen GC
    32 杀螨酯 chlorfenson GC 132 多效唑 paclobutrazol LC + GC
    33 毒虫畏 chlorfenvinphos LC 133 对氧磷 paraoxon LC
    34 乙酯杀螨醇 chlorobenzilate GC 134 对硫磷 parathion LC
    35 地茂散 chloroneb GC 135 甲基对硫磷 parathion-methyl LC
    36 氯苯胺灵 chlorpropham GC 136 戊菌唑 penconazole LC
    37 毒死蜱 chlorpyrifos LC + GC 137 二甲戊灵 pendimethalin LC + GC
    38 甲基毒死蜱 chlorpyrifos-methyl LC + GC 138 五氯苯胺 pentachloroaniline GC
    39 异草酮 clomazone LC + GC 139 五氯硝基苯 pentachloronitrobenzene GC
    40 蝇毒磷 coumaphos LC 140 氯菊酯 permethrin LC + GC
    41 环草敌 cycloate GC 141 苯醚菊酯 phenothrin GC
    42 氟环菌胺 cyflufenamid GC 142 甲拌磷 phorate LC
    43 氟氯氰菊酯 cyfluthrin GC 143 甲拌磷砜 phorate sulfone LC + GC
    44 高效氯氟氰菊酯 lambda-cyhalothrin GC 144 甲拌磷亚砜 phorate sulfoxide LC + GC
    45 环唑醇 cyproconazole GC 145 伏杀硫磷 phosalone LC
    46 嘧菌环胺 cyprodinil GC 146 亚胺硫磷 phosmet LC
    47 o, p′-滴滴滴 o, p′-DDD GC 147 磷胺 Ⅰphosphamidon Ⅰ GC
    48 p, p′-滴滴滴 p, p′-DDD GC 148 磷胺 Ⅱphosphamidon Ⅱ GC
    49 o, p′-滴滴伊 o, p′-DDE GC 149 增效醚 piperonyl butoxide GC
    50 p, p′-滴滴伊 p, p′-DDE GC 150 哌草磷 piperophos GC
    51 溴氰菊酯 deltamethrin LC + GC 151 抗蚜威 pirimicarb LC + GC
    52 二嗪磷 diazinon LC + GC 152 乙基虫螨磷 pirimiphos-ethyl LC + GC
    53 除线磷 dichlofenthion GC 153 甲基虫螨磷 pirimiphos-methyl LC + GC
    54 敌草腈 dichlorobenzonitrile GC 154 丙草胺 pretilachlor GC
    55 敌敌畏 dichlorvos GC 155 咪鲜胺 prochloraz LC
    56 禾草灵 diclofop-methyl GC 156 丙溴磷 profenofos LC
    57 百治磷 dicrotophos LC 157 扑草净 prometryn LC + GC
    58 狄氏剂 dieldrin GC 158 拿草特 pronamide GC
    59 乙霉威 diethofencarb GC 159 克螨特 propargite LC
    60 苯醚甲环唑 difenoconazole LC + GC 160 扑草津 propazine LC + GC
    61 哌草丹 dimepiperate GC 161 胺丙威 propetamphos GC
    62 乐果 dimethoate LC 162 丙环唑 propiconazole LC + GC
    63 烯酰吗啉 dimethomorph LC + GC 163 异丙草胺 propisochlor GC
    64 烯唑醇 diniconazole LC + GC 164 残杀威 propoxur LC + GC
    65 二苯胺 diphenylamine GC 165 戊炔草胺 propyzamide LC
    66 异丙净 dipropetryn GC 166 丙硫磷 prothiofos LC + GC
    67 灭菌磷 ditalimfos GC 167 吡唑硫磷 pyraclofos LC
    68 硫丹 endosulfan ii GC 168 吡菌磷 pyrazophos LC
    69 异狄氏剂 endrin GC 169 哒螨灵 pyridaben GC
    70 氟环唑 epoxiconazole GC 170 哒嗪硫磷 pyridaphenthion LC
    71 乙丁烯氟灵 ethalfluralin GC 171 嘧霉胺 pyrimethanil LC + GC
    72 硫草敌 ethiolate GC 172 吡丙醚 pyriproxyfen GC
    73 乙硫磷 ethion LC 173 喹硫磷 quinalphos LC + GC
    74 乙氧呋草黄 ethofumesate GC 174 喹氧灵 quinoxyfen LC
    75 灭线磷 ethoprophos LC + GC 175 八甲磷 schradan GC
    76 土菌灵 etridiazole GC 176 西玛津 simazine GC
    77 乙嘧硫磷 etrimfos LC + GC 177 螺螨酯 spirodiclofen LC
    78 唑菌酮 famoxadone LC + GC 178 治螟磷 sulfotep LC + GC
    79 克线磷 fenamiphos LC 179 刘丙磷 sulprofos LC
    80 氯苯嘧啶醇 fenarimol LC + GC 180 戊唑醇 tebuconazole LC
    81 腈苯唑 fenbuconazole LC + GC 181 吡螨胺 tebufenpyrad LC
    82 杀螟硫磷 fenitrothion LC 182 丁嘧硫磷 tebupirimfos GC
    83 仲丁威 fenobucarb LC + GC 183 四氯硝基苯 tecnazene GC
    84 苯硫威 fenothiocarb LC + GC 184 特丁硫磷砜 terbufos sulfone GC
    85 甲氰菊酯 fenpropathrin LC + GC 185 特丁津 terbuthylazine GC
    86 丁苯吗啉 fenpropimorph LC 186 杀虫畏 tetrachlorvinphos LC
    87 倍硫磷 fenthion LC 187 四氟醚唑 tetraconazole LC + GC
    88 氰戊菊酯 fenvalerate GC 188 三氯杀螨砜 tetradifon GC
    89 氟虫腈 fipronil LC 189 禾草丹 thiobencarb LC
    90 氟吡禾草灵 fluazifop-butyl LC + GC 190 虫线磷 thionazin GC
    91 氟氰戊菊酯 flucythrinate GC 191 甲基立枯磷 tolclofos-methyl LC + GC
    92 氟喹唑 fluquinconazole LC + GC 192 三唑酮 triadimefon LC + GC
    93 氟酰胺 flutolanil LC + GC 193 三唑醇 triadimenol GC
    94 氟胺氰菊酯 fluvalinate GC 194 野麦畏 triallate GC
    95 地虫硫磷 fonofos LC 195 三唑磷 triazophos LC
    96 噻唑膦 fosthiazate LC 196 敌百虫 trichlorfon GC
    97 六氯苯 hexachlorobenzene GC 197 毒壤磷 trichloronat GC
    98 己唑醇 hexaconazole LC + GC 198 肟菌酯 trifloxystrobin GC
    99 环嗪酮 hexazinone GC 199 蚜灭磷 vamidothion LC
    100 抑霉唑 imazalil LC 200 乙烯菌核利 vinclozolin GC
    注:*GC表示该农药使用GC-MS/MS检测;LC表示该农药使用UPLC-MS/MS检测;LC + GC表示该农药同时使用2种仪器检测。Note:* GC means the pesticide was determined by GC-MS/MS; LC means the pesticide was determined by UPLC-MS/MS; LC + GC means the pesticide was determined by both equipments.
    下载: 导出CSV

    表  2  超高效液相色谱-串联质谱流动相梯度洗脱参数

    Table  2.   The UPLC-MS/MS gradient elution procedure of mobile phase

    时间
    Time/min
    流速
    Flow rate/
    (mL/min)
    流动相 Mobile phase/%
    A (甲醇
    Methanol)
    B (2 mmol/L醋酸铵溶液
    2 mmol/L Ammonium acetate)
    0 0.3 15 85
    0.5 0.3 15 85
    2.5 0.3 50 50
    10 0.3 95 5
    12 0.3 95 5
    12.1 0.3 15 85
    15 0.3 15 85
    质谱条件:气帘气172 kPa,碰撞气中等;离子喷雾电压5.5 kV;离子源温度500 ℃;离子源气体分别为1 345 kPa和2 345 kPa;多反应监测模式 (MRM)。各农药保留时间和质谱参数见文献方法[18]
    下载: 导出CSV

    表  3  在不同检测方法下17种供试蔬菜不同强度基质效应的农药数量

    Table  3.   The number of pesticides with different matrix effects in 17 vegetables

    编号
    No.
    蔬菜
    Vegetables
    GC-MS/MS UPLC-MS/MS

    Weak
    中等
    Medium

    Strong

    Weak
    中等
    Medium

    Strong
    1 萝卜 Radish 70 61 19 52 46 7
    2 普通白菜
    Chinese cabbage
    26 85 39 79 23 3
    3 胡萝卜 Carrot 15 93 42 85 18 2
    4 花椰菜 Broccoli 15 95 40 59 36 10
    5 茄子 Eggplant 68 61 21 90 10 5
    6 西葫芦 Zucchini 21 92 37 97 7 1
    7 大蒜 Garlic 11 77 62 3 24 78
    8 辣椒 Pepper 24 89 37 67 32 6
    9 番茄 Tomato 28 83 39 75 25 5
    10 葱 Green onion 1 1 148 15 65 25
    11 菠菜 Spinach 16 81 53 37 58 10
    12 黄瓜 Cucumber 14 94 42 76 24 5
    13 豇豆 Cowpea 11 86 53 52 44 9
    14 韭菜 Leek 4 66 80 21 66 18
    15 芹菜 Celery 7 69 74 6 84 15
    16 生菜 Lettuce 6 85 59 71 28 6
    17 姜 Ginger 62 54 34 3 38 64
    下载: 导出CSV
  • [1] HE Z Y, WANG L, PENG Y, et al. Multiresidue analysis of over 200 pesticides in cereals using a QuEChERS and gas chromatography-tandem mass spectrometry-based method[J]. Food Chem, 2015, 169: 372-380. doi: 10.1016/j.foodchem.2014.07.102
    [2] KITTLAUS S, SCHIMANKE J, KEMPE G, et al. Assessment of sample cleanup and matrix effects in the pesticide residue analysis of foods using postcolumn infusion in liquid chromatography-tandem mass spectrometry[J]. J Chromatogr A, 2011, 1218(46): 8399-8410. doi: 10.1016/j.chroma.2011.09.054
    [3] RIEDEL M, SPEER K, STUKE S, et al. Simultaneous analysis of 70 pesticides using HPLC/MS/MS: a comparison of the multiresidue method of Klein and Alder and the QuEChERS method[J]. J AOAC Int, 2010, 93(6): 1972-1986.
    [4] BASILICATA P, MIRAGLIA N, PIERI M, et al. Application of the standard addition approach for the quantification of urinary benzene[J]. J Chromatogr B, 2005, 818(2): 293-299. doi: 10.1016/j.jchromb.2005.01.013
    [5] YARITA T, AOYAGI Y, OTAKE T. Evaluation of the impact of matrix effect on quantification of pesticides in foods by gas chromatography-mass spectrometry using isotope-labeled internal standards[J]. J Chromatogr A, 2015, 1396: 109-116. doi: 10.1016/j.chroma.2015.03.075
    [6] RIMAYI C, ODUSANYA D, MTUNZI F, et al. Alternative calibration techniques for counteracting the matrix effects in GC-MS-SPE pesticide residue analysis: a statistical approach[J]. Chemosphere, 2015, 118: 35-43. doi: 10.1016/j.chemosphere.2014.05.075
    [7] STAHNKE H, KITTLAUS S, KEMPE G, et al. Reduction of matrix effects in liquid chromatography–electrospray ionization–mass spectrometry by dilution of the sample extracts: how much dilution is needed?[J]. Anal Chem, 2012, 84(3): 1474-1482. doi: 10.1021/ac202661j
    [8] MAŠTOVSKÁ K, LEHOTAY S J, ANASTASSIADES M. Combination of analyte protectants to overcome matrix effects in routine GC analysis of pesticide residues in food matrixes[J]. Anal Chem, 2005, 77(24): 8129-8137. doi: 10.1021/ac0515576
    [9] Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed: SANTE/11813/2017[S]. European Commission, 2017.
    [10] Guidelines on performance criteria for methods of analysis for the determination of pesticide residues in food and feed: GL90—2017[S]. Codex Alimentarius, 2017.
    [11] 食品安全国家标准. 植物源性食品中草铵膦残留量的测定. 液相色谱-质谱联用法: GB 23200.108—2018[S]. 北京: 中国农业出版社, 2018.

    National food safety standard. Determination of glufosinate-ammonium residues in foods of plant origin. Liqiud chromatography-tandem mass spectrometry method: GB 23200.108—2018[S]. Beijing: China Agriculture Press, 2018.
    [12] 食品安全国家标准. 植物源性食品中二氯吡啶酸残留量的测定. 液相色谱-质谱联用法: GB 23200.109—2018[S]. 北京: 中国农业出版社, 2018.

    National food safety standard. Determination of clopyralid residues in foods of plant origin. Liqiud chromatography-tandem mass spectrometry method: GB 23200.109—2018[S]. Beijing: China Agriculture Press, 2018.
    [13] 食品安全国家标准. 植物源性食品中氯吡脲残留量的测定. 液相色谱-质谱联用法: GB 23200.110—2018[S]. 北京: 中国农业出版社, 2018.

    National food safety standard. Determination of forchlorfenuron residues in foods of plant origin. Liqiud chromatography-tandem mass spectrometry method: GB 23200.110—2018[S]. Beijing: China Agriculture Press, 2018.
    [14] FERNÁNDEZ-ALBA A R, GARCÍA-REYES J F. Large-scale multi-residue methods for pesticides and their degradation products in food by advanced LC-MS[J]. Trends Anal Chem, 2008, 27(11): 973-990. doi: 10.1016/j.trac.2008.09.009
    [15] ANASTASSIADES M, LEHOTAY S J, STAJNBAHER D, et al. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce[J]. J AOAC Int, 2003, 86(2): 412-431.
    [16] 邱世婷, 蒲凤琳, 侯雪, 等. 超高效液相色谱-串联质谱法测定 9 种绿叶类蔬菜中 36 种农药多残留的基质效应[J]. 农药学学报, 2018, 20(5): 661-667.

    QIU S T, PU F L, HOU X, et al. Matrix effects in the analysis of 36 pesticides residues in nine kinds of green leafy vegetables by ultra performance liquid chromatography-tandem mass spectrometry[J]. Chin J Pestic Sci, 2018, 20(5): 661-667.
    [17] HE Z Y, WANG Y H, WANG L, et al. Determination of 255 pesticides in edible vegetable oils using QuEChERS method and gas chromatography tandem mass spectrometry[J]. Anal Bioanal Chem, 2017, 409(4): 1017-1030. doi: 10.1007/s00216-016-0016-9
    [18] WANG J S, HE Z Y, WANG L, et al. Automatic single-step quick, easy, cheap, effective, rugged and safe sample preparation devices for analysis of pesticide residues in foods[J]. J Chromatogr A, 2017, 1521: 10-18. doi: 10.1016/j.chroma.2017.09.027
    [19] HE Z Y, CHEN S S, WANG L, et al. Multiresidue analysis of 213 pesticides in leek and garlic using QuEChERS-based method and gas chromatography-triple quadrupole mass spectrometry[J]. Anal Bioanal Chem, 2015, 407(9): 2637-2643. doi: 10.1007/s00216-015-8485-9
    [20] GONZÁLEZ-CURBELO M Á, HERNÁNDEZ-BORGES J, BORGES-MIQUEL T M, et al. Determination of pesticides and their metabolites in processed cereal samples[J]. Food Addit Contam: Part A, 2012, 29(1): 104-116. doi: 10.1080/19440049.2011.615032
    [21] CHEN H P, YIN P, WANG Q H, et al. A modified QuEChERS sample preparation method for the analysis of 70 pesticide residues in tea using gas chromatography-tandem mass spectrometry[J]. Food Anal Methods, 2014, 7(8): 1577-1587. doi: 10.1007/s12161-014-9791-0
    [22] HAJŠLOVÁ J, ZROSTLı?KOVÁ J. Matrix effects in (ultra)trace analysis of pesticide residues in food and biotic matrices[J]. J Chromatogr A, 2003, 1000(1-2): 181-197. doi: 10.1016/S0021-9673(03)00539-9
    [23] CHEN G Q, CAO P Y, LIU R J. A multi-residue method for fast determination of pesticides in tea by ultra performance liquid chromatography–electrospray tandem mass spectrometry combined with modified QuEChERS sample preparation procedure[J]. Food Chem, 2011, 125(4): 1406-1411. doi: 10.1016/j.foodchem.2010.10.017
    [24] WALORCZYK S, DROŻDŻYŃSKI D, KIERZEK R. Determination of pesticide residues in samples of green minor crops by gas chromatography and ultra performance liquid chromatography coupled to tandem quadrupole mass spectrometry[J]. Talanta, 2015, 132: 197-204. doi: 10.1016/j.talanta.2014.08.073
    [25] KWON H, ANASTASSIADES M, DÖRK D, et al. Compensation for matrix effects in GC analysis of pesticides by using cucumber extract[J]. Anal Bioanal Chem, 2018, 410(22): 5481-5489. doi: 10.1007/s00216-018-1197-1
    [26] JIAO W T, XIAO Y, QIAN X S, et al. Optimized combination of dilution and refined QuEChERS to overcome matrix effects of six types of tea for determination eight neonicotinoid insecticides by ultra performance liquid chromatography-electrospray tandem mass spectrometry[J]. Food Chem, 2016, 210: 26-34. doi: 10.1016/j.foodchem.2016.04.097
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  1484
  • HTML全文浏览量:  256
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-15
  • 录用日期:  2019-03-13
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回