• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型农药残留快速检测技术研究进展

王冬伟 刘畅 周志强 王鹏

王冬伟, 刘畅, 周志强, 王鹏. 新型农药残留快速检测技术研究进展[J]. 农药学学报, 2019, 21(5-6): 852-864. doi: 10.16801/j.issn.1008-7303.2019.0090
引用本文: 王冬伟, 刘畅, 周志强, 王鹏. 新型农药残留快速检测技术研究进展[J]. 农药学学报, 2019, 21(5-6): 852-864. doi: 10.16801/j.issn.1008-7303.2019.0090
WANG Dongwei, LIU Chang, ZHOU Zhiqiang, WANG Peng. Recent advances in rapid detection of pesticide residues[J]. Chinese Journal of Pesticide Science, 2019, 21(5-6): 852-864. doi: 10.16801/j.issn.1008-7303.2019.0090
Citation: WANG Dongwei, LIU Chang, ZHOU Zhiqiang, WANG Peng. Recent advances in rapid detection of pesticide residues[J]. Chinese Journal of Pesticide Science, 2019, 21(5-6): 852-864. doi: 10.16801/j.issn.1008-7303.2019.0090

新型农药残留快速检测技术研究进展

doi: 10.16801/j.issn.1008-7303.2019.0090
基金项目: 国家自然科学基金 (21677175)
详细信息
    作者简介:

    王冬伟,男,博士研究生,E-mail:dw_wang@cau.edu.cn

    通讯作者:

    王鹏,通信作者 (Author for correspondence),男,博士,教授,主要研究方向为农药环境行为,E-mail:wangpeng@cau.edu.cn

  • 中图分类号: TQ450;O657

Recent advances in rapid detection of pesticide residues

  • 摘要: 农药残留检测关乎食品安全和人类健康问题。传统农药残留检测通常选择色谱法或色谱-质谱联用法等,具有准确、稳定等优势,但通常需要昂贵而复杂的大型仪器,样品前处理过程费时费力,对操作人员要求高。为了克服这些缺陷,一系列农药快速检测技术相继被开发出来。文章介绍了可用于农药残留快速检测的主要技术,包括生物传感器 (酶传感器、免疫传感器、适配体传感器、细胞传感器)、光谱技术 (近红外光谱、太赫兹时域光谱、拉曼光谱等) 与微流控技术,重点介绍了这些技术的原理、特点与最新研究进展,分析了目前农药快速检测技术存在的问题与未来的发展前景。
  • 图  1  农药对酶催化活性抑制的示意图

    Figure  1.  Schematic representation of enzyme inhibition by pesticide

    图  2  还原氧化石墨烯-纳米金结合乙酰胆碱酯酶电化学检测农药残留[15]

    Figure  2.  Electrochemical detection of pesticide residues based on rGO-AuNPs-AChE[15]

    图  3  氮掺杂量子点-乙酰胆碱酯酶荧光法检测苯氧威[18]

    Figure  3.  Fluorescence detection of fenoxycarb based on N-doped graphene quantum dots and AChE[18]

    图  4  免疫传感器检测原理

    Figure  4.  Detection principle of immunosensor

    图  5  石墨烯功能化结合抗体碳电极用于阻抗滴定法检测对硫磷[23]

    Figure  5.  Impedimetric detection of parathion by functionalized graphene immunosensor[23]

    图  6  指数富集的配体系统进化技术原理示意图

    Figure  6.  Schematic representation of systematic evolution of ligands by exponential enrichment (SELEX)

    图  7  多菌灵的电化学适配体传感器检测[32]

    Figure  7.  Detection of carbendazim based on electrochemical aptasenor[32]

    图  8  触须阵列拉曼信号增强基底用于农药残留的取样与检测[39]

    Figure  8.  Nanotentacle Raman signal enhance substrate for sampling and detection of pesticide residues[39]

  • [1] MOSTAFALOU S, ABDOLLAHI M. Pesticides: an update of human exposure and toxicity[J/OL]. Arch Toxicol, 2017, 91(2): 549-599.[2018-01-26]. https://link.springer.com/article/10.1007%2Fs00204-016-1849-x.
    [2] SAMSIDAR A, SIDDIQUEE S, SHAARANI S M. A review of extraction, analytical and advanced methods for determination of pesticides in environment and foodstuffs[J/OL]. Trends Food Sci Tech, 2018, 71: 188-201.[2018-01-26]. https://doi.org/10.1016/j.jpgs.2017.11.011.
    [3] TURNER A P F, KARUBE I, WILSON G S. Biosensors: fundamentals and applications[M/OL]. Oxford University Press, 1987.[2018-01-26]. https://doi.org/10.1016/j.bios.2014.10.027
    [4] WANG J. Analytical electrochemistry[M/OL]. John Wiley & Sons, Inc, 2006: 1-28.[2018-01-26]. https://onlinelibrary.wiley.com/doi/book/10.1002/0471790303.
    [5] LIU K K, DONG H M, DENG Y. Recent advances on rapid detection of pesticides based on enzyme biosensor of nanomaterials[J/OL]. J Nanosci Nanotech, 2016, 16(7): 6648-6656.[2018-01-26]. https://doi.org/10.1166/jnn.2016.11392.
    [6] WEN W, YAN X, ZHU C Z, et al. Recent advances in electrochemical immunosensors[J/OL]. Anal Chem, 2017, 89(1): 138-156.[2018-01-26]. https://pubs.acs.org/doi/abs/10.1021/acs.analchem.6b04281.
    [7] KIM Y S, RASTON N H A, GU M B. Aptamer-based nanobiosensors[J/OL]. Biosens Bioelectron, 2016, 76: 2-19.[2018-01-26]. https://doi.org/10.1016/j.bios.2015.06.040.
    [8] ZOU L, WU C S, WANG Q, et al. An improved sensitive assay for the detection of psp toxins with neuroblastoma cell-based impedance biosensor[J/OL]. Biosens Bioelectron, 2015, 67: 458-464.[2018-01-26]. https://doi.org/10.1016/j.bios.2014.09.005.
    [9] LIU L, ZHAI J F, ZHU C Z, et al. One-pot synthesis of 3-dimensional reduced graphene oxide-based hydrogel as support for microbe immobilization and BOD biosensor preparation[J/OL]. Biosens Bioelectron, 2015, 63: 483-489.[2018-01-26]. https://doi.org/10.1016/j.bios.2014.07.074.
    [10] TIWARI J N, VIJ V, KEMP K C, et al. Engineered carbon-nanomaterial-based electrochemical sensors for biomolecules[J/OL]. Acs Nano, 2016, 10(1): 46-80.[2018-01-26]. https://pubs.acs.org/doi/abs/10.1021/acsnano.5b05690.
    [11] YOO S M, LEE S Y. Optical biosensors for the detection of pathogenic microorganisms[J/OL]. Trends Biotech, 2016, 34(1): 7-25.[2018-01-26]. https://doi.org/10.1016/j.tibtech.2015.09.012.
    [12] BUNDE R L, JARVI E J, ROSENTRETER J J. Piezoelectric quartz crystal biosensors[J/OL]. Talanta, 1998, 46(6): 1223-1236.[2018-01-26]. https://doi.org/10.1016/S0039-9140(97)00392-5.
    [13] LEE S, HYUN LEE J, KIM M G, et al. Bi nanowire-based thermal biosensor for the detection of salivary cortisol using the thomson effect[J/OL]. Appl Phys Lett, 2013, 103(14): 143114.[2018-01-26]. https://aip.scitation.org/doi/full/10.1063/1.4833029.
    [14] VERMA N, BHARDWAJ A. Biosensor technology for pesticides: a review[J/OL]. Appl Biochem Biotechnol, 2015, 175(6): 3093-3119.[2018-01-26]. https://link.springer.com/article/10.1007/s12010-015-1489-2.
    [15] LIU T, SU H C, QU X J, et al. Acetylcholinesterase biosensor based on 3-carboxyphenylboronic acid/reduced graphene oxide-gold nanocomposites modified electrode for amperometric detection of organophosphorus and carbamate pesticides[J/OL]. Sensor Actuat B-Chem, 2011, 160(1): 1255-1261.[2018-01-26]. https://doi.org/10.1016/j.snb.2011.09.059.
    [16] DUTTA R R, PUZARI P. Amperometric biosensing of organophosphate and organocarbamate pesticides utilizing polypyrrole entrapped acetylcholinesterase electrode[J/OL]. Biosens Bioelectron, 2014, 52: 166-172.[2018-01-26]. https://doi.org/10.1016/j.bios.2013.08.050.
    [17] MISHRA R K, HUBBLE L J, MART N A, et al. Wearable flexible and stretchable glove biosensor for on-site detection of organophosphorus chemical threats[J/OL]. ACS Sensors, 2017, 2(4): 553-561.[2018-01-26]. https://pubs.acs.org/doi/abs/10.1021/acssensors.7b00051.
    [18] CABALLERO-DIAZ E, BENITEZ-MARTINEZ S, VALCARCEL M. Rapid and simple nanosensor by combination of graphene quantum dots and enzymatic inhibition mechanisms[J/OL]. Sensor Actuat B-Chem, 2017, 240: 90-99.[2018-01-26]. https://doi.org/10.1016/j.snb.2016.08.153.
    [19] CHANG J F, LI H Y, HOU T, et al. Paper-based fluorescent sensor for rapid naked-eye detection of acetylcholinesterase activity and organophosphorus pesticides with high sensitivity and selectivity[J/OL]. Biosens Bioelectron, 2016, 86: 971-977.[2018-01-26]. https://doi.org/10.1016/j.bios.2016.07.022.
    [20] HADDAOUI M, RAOUAFI N. Chlortoluron-induced enzymatic activity inhibition in tyrosinase/ZnO NPs/spce biosensor for the detection of ppb levels of herbicide[J/OL]. Sensor Actuat B-Chem, 2015, 219: 171-178.[2018-01-26]. https://doi.org/10.1016/j.snb.2015.05.023.
    [21] ROCABOY-FAQUET E, BARTHELMEBS L, CALAS-BLANCHARD C, et al. A novel amperometric biosensor for β-triketone herbicides based on hydroxyphenylpyruvate dioxygenase inhibition: A case study for sulcotrione[J/OL]. Talanta, 2016, 146: 510-516.[2018-01-26]. https://doi.org/10.1016/j.talanta.2015.09.030.
    [22] REYNOSO E C, TORRES E, BETTAZZI F, et al. Trends and perspectives in immunosensors for determination of currently-used pesticides: The case of glyphosate, organophosphates, and neonicotinoids[J/OL]. Biosensors, 2019, 9(1): 20.[2018-01-26]. https://doi.org/10.3390/bios9010020.
    [23] MEHTA J, VINAYAK P, TUTEJA S K, et al. Graphene modified screen printed immunosensor for highly sensitive detection of parathion[J/OL]. Biosens Bioelectron, 2016, 83: 339-346.[2018-01-26]. https://doi.org/10.1016/j.bios.2016.04.058.
    [24] HOMOLA J, YEE S S, GAUGLITZ G. Surface plasmon resonance sensors: review[J/OL]. Sensor Actuat B-Chem, 1999, 54(1-2): 3-15.[2018-01-26]. https://doi.org/10.1016/S0925-4005(98)00321-9.
    [25] GUO Y R, LIU R, LIU Y, et al. A non-competitive surface plasmon resonance immunosensor for rapid detection of triazophos residue in environmental and agricultural samples[J/OL]. Sci Total Environ, 2018, 613: 783-791.[2018-01-26]. https://doi.org/10.1016/j.scitotenv.2017.09.157.
    [26] LIU G, GUO W Q, SONG D D. A multianalyte electrochemical immunosensor based on patterned carbon nanotubes modified substrates for detection of pesticides[J/OL]. Biosens Bioelectron, 2014, 52: 360-366.[2018-01-26]. https://doi.org/10.1016/j.bios.2013.09.009.
    [27] HERMANN T, PATEL D J. Adaptive recognition by nucleic acid aptamers[J/OL]. Science, 2000, 287(5454): 820-825.[2018-01-26]. https://doi.org/10.1126/science.287.5454.820.
    [28] LIU X F, ZHANG X W. Aptamer-based technology for food analysis[J/OL]. Appl Biochem Biotechnol, 2015, 175(1): 603-624.[2018-01-26]. https://link.springer.com/article/10.1007/s12010-014-1289-0.
    [29] HE J A, LIU Y A, FAN M T, et al. Isolation and identification of the DNA aptamer target to acetamiprid[J/OL]. J Agr Food Chem, 2011, 59(5): 1582-1586.[2018-01-26]. https://pubs.acs.org/doi/abs/10.1021/jf104189g.
    [30] LAN L Y, YAO Y A, PING J F, et al. Recent progress in nanomaterial-based optical aptamer assay for the detection of food chemical contaminants[J/OL]. Acs Appl Mater Interfaces, 2017, 9(28): 23287-23301.[2018-01-26]. http://pubs.acs.org/doi/10.1021/acsami.7b03937.
    [31] BALA R, KUMAR M, BANSAL K, et al. Ultrasensitive aptamer biosensor for malathion detection based on cationic polymer and gold nanoparticles[J/OL]. Biosens Bioelectron, 2016, 85: 445-449.[2018-01-26]. https://doi.org/10.1016/j.bios.2016.05.042.
    [32] EISSA S, ZOUROB M. Selection and characterization of DNA aptamers for electrochemical biosensing of carbendazim[J/OL]. Anal Chem, 2017, 89(5): 3138-3145.[2018-01-26]. http://pubs.acs.org/doi/abs/10.1021/acs.analchem.6b04914.
    [33] PARVEZ S, VENKATARAMAN C, MUKHERJI S. A review on advantages of implementing luminescence inhibition test (vibrio fischeri) for acute toxicity prediction of chemicals[J/OL]. Environ Int, 2006, 32(2): 265-268.[2018-01-26]. https://doi.org/10.1016/j.envint.2005.08.022.
    [34] KUMAR J, D'SOUZA S F. An optical microbial biosensor for detection of methyl parathion using Sphingomonas sp. immobilized on microplate as a reusable biocomponent[J/OL]. Biosens Bioelectron, 2010, 26(4): 1292.[2018-01-26]. https://doi.org/10.1016/j.bios.2010.07.016.
    [35] RANJAN R, RASTOGI N K, THAKUR M S. Development of immobilized biophotonic beads consisting of photobacterium leiognathi for the detection of heavy metals and pesticide[J/OL]. J Hazard Mater, 2012, 225: 114-123.[2018-01-26]. https://doi.org/10.1016/j.jhazmat.2012.04.076.
    [36] MISHRA A, KUMAR J, MELO J S. An optical microplate biosensor for the detection of methyl parathion pesticide using a biohybrid of sphingomonas sp cells-silica nanoparticles[J/OL]. Biosens Bioelectron, 2017, 87: 332-338.[2018-01-26]. https://doi.org/10.1016/j.bios.2016.08.048.
    [37] NIE S M, EMERY S R. Probing single molecules and single nanoparticles by surface-enhanced raman scattering[J/OL]. Science, 1997, 275(5303): 1102-1106.[2018-01-26]. https://science.sciencemag.org/content/275/5303/1102.
    [38] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver electrode[J/OL]. Chem Phys Lett, 1974, 26(2): 163-166.[2018-01-26]. https://doi.org/10.1016/0009-2614(74)85388-1.
    [39] WANG P, WU L, LU Z C, et al. Gecko-inspired nanotentacle surface-enhanced raman spectroscopy substrate for sampling and reliable detection of pesticide residues in fruits and vegetables[J/OL]. Anal Chem, 2017, 89(4): 2424-2431.[2018-01-26]. http://pubs.acs.org/doi/10.1021/acs.analchem.6b04324.
    [40] ZHANG H, SUN L, ZHANG Y, et al. Production of stable and sensitive sers substrate based on commercialized porous material of silanized support[J/OL]. Talanta, 2017, 174: 301-306.[2018-01-26]. https://doi.org/10.1016/j.talanta.2017.06.025.
    [41] LIU Z G, WANG Y, DENG R, et al. Fe3O4@graphene oxide@Ag particles for surface magnet solid-phase extraction surface-enhanced raman scattering (SMSPE-SERS): from sample pretreatment to detection all-in-one[J]. Acs Appl Mater Interfaces, 2016, 8(22): 14160-14168.[2018-01-26]. http://pubs.acs.org/doi/abs/10.1021/acsami.6b02944.
    [42] LI B, SHI Y E, CUI J C, et al. Au-coated ZnO nanorods on stainless steel fiber for self-cleaning solid phase microextraction-surface enhanced raman spectroscopy[J/OL]. Anal Chim Acta, 2016, 923: 66-73.[2018-01-26]. http://dx.doi.org/10.1016/j.aca.2016.04.002.
    [43] EL ALAMI A, LAGARDE F, TAMER U, et al. Enhanced raman spectroscopy coupled to chemometrics for identification and quantification of acetylcholinesterase inhibitors[J/OL]. Vib Spectrosc, 2016, 87: 27-33.[2018-01-26]. https://doi.org/10.1016/j.vibspec.2016.09.005.
    [44] NIE Y H, TENG Y J, LI P, et al. Label-free aptamer-based sensor for specific detection of malathion residues by surface-enhanced raman scattering[J/OL]. Spectrochim acta A, 2017, 191: 271-276.[2018-01-26]. https://doi.org/10.1016/j.saa.2017.10.030.
    [45] GONZALEZ-MARTIN M I, REVILLA I, VIVAR-QUINTANA A M, et al. Pesticide residues in propolis from spain and chile. An approach using near infrared spectroscopy[J/OL]. Talanta, 2017, 165: 533-539.[2018-01-26]. https://doi.org/10.1016/j.talanta.2016.12.061.
    [46] SALGUERO-CHAPARRO L, GAIT N-JURADO A J, ORTIZ-SOMOVILLA V, et al. Feasibility of using nir spectroscopy to detect herbicide residues in intact olives[J/OL]. Food Control, 2013, 30(2): 504-509.[2018-01-26]. https://doi.org/10.1016/j.foodcont.2012.07.045.
    [47] ZHENG X M, MCLAUGHLIN C V, CUNNINGHAM P, et al. Organic broadband terahertz sources and sensors[J/OL]. J Nanoelectron Optoelectron, 2007, 2(1): 58-76.[2018-01-26]. https://doi.org/10.1166/jno.2007.005.
    [48] XU W, XIE L J, ZHU J F, et al. Terahertz sensing of chlorpyrifos-methyl using metamaterials[J/OL]. Food Chem, 2017, 218: 330-334.[2018-01-26]. https://doi.org/10.1016/j.foodchem.2016.09.032.
    [49] QIN B Y, LI Z, LUO Z H, et al. Terahertz time-domain spectroscopy combined with pca-cfsfdp applied for pesticide detection[J/OL]. Opt Quant Electron, 2017, 49(7): 244.[2018-01-26]. https://link.springer.com/article/10.1007/s11082-017-1080-x.
    [50] RUSAK D A, CASTLE B C, SMITH B W, et al. Fundamentals and applications of laser-induced breakdown spectroscopy[J/OL]. Critical Reviews In Analytical Chemistry, 1997, 27(4): 257-290.[2018-01-26]. https://doi.org/10.1080/10408349708050587.
    [51] MARKIEWICZ-KESZYCKA M, CAMA-MONCUNILL X, CASADO-GAVALDA M P, et al. Laser-induced breakdown spectroscopy (libs) for food analysis: A review[J/OL]. Trends Food Sci Tech, 2017, 65: 80-93.[2018-01-26]. https://doi.org/10.1016/j.jpgs.2017.05.005.
    [52] DU X F, DONG D M, ZHAO X D, et al. Detection of pesticide residues on fruit surfaces using laser induced breakdown spectroscopy[J/OL]. RSC Adv, 2015, 5(97): 79956-79963.[2018-01-26]. http://dx.doi.org/10.1039/c5ra12461a.
    [53] MULTARI R A, CREMERS D A, SCOTT T, et al. Detection of pesticides and dioxins in tissue fats and rendering oils using laser-induced breakdown spectroscopy (libs)[J/OL]. J Agric Food Chem, 2013, 61(10): 2348-2357.[2018-01-26]. https://pubs.acs.org/doi/abs/10.1021/jf304589s.
    [54] GIOKAS D L, VLESSIDIS A G, TSOGAS G Z, et al. Nanoparticle-assisted chemiluminescence and its applications in analytical chemistry[J/OL]. Trac-Trends In Analytical Chemistry, 2010, 29(10): 1113-1126.[2018-01-26]. https://doi.org/10.1016/j.trac.2010.07.001.
    [55] ZHANG W B, WEI M, SONG W, et al. Evaluation of pyridaben residues on fruit surfaces and their stability by a novel on-line dual-frequency ultrasonic device and chemiluminescence detection[J/OL]. J Agric Food Chem, 2017, 65(44): 9799-9806.[2018-01-26]. http://pubs.acs.org/doi/10.1021/acs.jafc.7b03357.
    [56] KHATAEE A, HASSANZADEH J, LOTFI R. A graphene quantum dot-assisted morin-kmno4 chemiluminescence system for the precise recognition of cypermethrin[J/OL]. New J Chem, 2017, 41(19): 10668-10676.[2018-01-26]. http://dx.doi.org/10.1039/C7NJ02343J.
    [57] LIU W, KOU J, XING H Z, et al. Paper-based chromatographic chemiluminescence chip for the detection of dichlorvos in vegetables[J/OL]. Biosens Bioelectron, 2014, 52: 76-81.[2018-01-26]. https://doi.org/10.1016/j.bios.2013.08.024.
    [58] BAGHERI N, KHATAEE A, HASSANZADEH, J, et al. Highly sensitive chemiluminescence sensing system for organophosphates using mimic LDH supported ZIF-8 nanocomposite [J/OL]. Sensor Actuat B-Chem, 2019, 284:220-227. [2018-01-26]. https://doi.org/10.1016/j.snb.2018.12.147.
    [59] ALAMO BUSA L S, MOHAMMADI S, MAEKI M, et al. Advances in microfluidic paper-based analytical devices for food and water analysis[J/OL]. Micromachines, 2016, 7(5): 86.[2018-01-26]. https://doi.org/10.3390/mi7050086.
    [60] TAHIRBEGI I B, EHGARTNER J, SULZER P, et al. Fast pesticide detection inside microfluidic device with integrated optical pH, oxygen sensors and algal fluorescence[J/OL]. Biosens Bioelectron, 2017, 88: 188-195.[2018-01-26]. https://doi.org/10.1016/j.bios.2016.08.014.
    [61] WANG J, SUZUKI H, SATAKE T. Coulometric microdevice for organophosphate pesticide detection[J/OL]. Sensor Actuat B-Chem, 2014, 204: 297-301.[2018-01-26]. https://doi.org/10.1016/j.snb.2014.06.115.
    [62] HUANG C, CHENG Y, GAO Z W, et al. Portable label-free inverse opal photonic hydrogel particles serve as facile pesticides colorimetric monitoring[J/OL]. Sensor Actuat B-Chem, 2018, 273: 1705-1712.[2018-01-26]. https://doi.org/10.1016/j.snb.2018.07.050.
    [63] PEREZ-FERNANDEZ V, ROCCA L M, TOMAI P, et al. Recent advancements and future trends in environmental analysis: sample preparation, liquid chromatography and mass spectrometry[J/OL]. Analytica Chimica Acta, 2017, 983: 9-41.[2018-01-26]. https://doi.org/10.1016/j.aca.2017.06.029.
    [64] RIZZETTI T M, KEMMERICH M L, MARTINS M L, et al. Optimization of a QuEChERS based method by means of central composite design for pesticide multiresidue determination in orange juice by UHPLC-MS/MS[J/OL]. Food Chem, 2016, 196: 25-33.[2018-01-26]. https://doi.org/10.1016/j.foodchem.2015.09.010.
    [65] ZOLTAN T, WISEMAN J M, BOGDAN G, et al. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization[J/OL]. Science, 2004, 306(5695): 471-473.[2018-01-26]. http://dx.doi.org/10.3410/f.1023228.267660.
    [66] PU F, ZHANG W, HAN C, et al. Fast quantitation of pyrazole fungicides in wine by ambient ionization mass spectrometry[J/OL]. Anal Methods-UK, 2017, 9(34): 5058-5064.[2018-01-26]. http://dx.doi.org/10.1039/c7ay01534h.
    [67] GUO T Y, Yong W, DONG Y Y. Automatically high-throughput quantification by paper spray ionization mass spectrometry for multiple pesticides in wine [J/OL]. Food Analytical Methods, 2019, 12(5):1208-1217.[2019-09-18]. https://doi.org/10.1007/s12161-019-01450-6.
    [68] WANG J Q, DU Q, YOU X R, et al. Solvent-free high-throughput analysis of herbicides in environmental water [J/OL]. Analytica Chimica Acta, 2019, 1071:8-16.[2019-09-18]. https://doi.org/10.1016/j.aca.2019.04.024.
    [69] PEREIRA I, RODRIGUES M F, CHAVES A R, et al. Molecularly imprinted polymer (MIP) membrane assisted direct spray ionization mass spectrometry for agrochemicals screening in foodstuffs[J/OL]. Talanta, 2018, 178: 507-514.[2018-01-26]. https://doi.org/10.1016/j.talanta.2017.09.080.
    [70] 黄宝勇, 欧阳喜辉, 孙江, 等. 大气压固体分析探头离子源-串联质谱法快速检测蔬菜中多种农药残留[J]. 高等学校化学学报, 2013, 34(7): 1591-1597.

    HUANG B Y, OUYANG X H, SUN J, et al. Rapid quantification of 13 pesticides in vegetables by atmospheric-pressure solids analysis probe (ASAP) coupled to tandem mass spectrometry[J]. Chem J Chin Univ, 2013, 34(7): 1591-1597.
  • 加载中
图(8)
计量
  • 文章访问数:  4054
  • HTML全文浏览量:  1769
  • PDF下载量:  227
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-22
  • 录用日期:  2019-08-31
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回