[1] |
MOSTAFALOU S, ABDOLLAHI M. Pesticides: an update of human exposure and toxicity[J/OL]. Arch Toxicol, 2017, 91(2): 549-599.[2018-01-26]. https://link.springer.com/article/10.1007%2Fs00204-016-1849-x.
|
[2] |
SAMSIDAR A, SIDDIQUEE S, SHAARANI S M. A review of extraction, analytical and advanced methods for determination of pesticides in environment and foodstuffs[J/OL]. Trends Food Sci Tech, 2018, 71: 188-201.[2018-01-26]. https://doi.org/10.1016/j.jpgs.2017.11.011.
|
[3] |
TURNER A P F, KARUBE I, WILSON G S. Biosensors: fundamentals and applications[M/OL]. Oxford University Press, 1987.[2018-01-26]. https://doi.org/10.1016/j.bios.2014.10.027
|
[4] |
WANG J. Analytical electrochemistry[M/OL]. John Wiley & Sons, Inc, 2006: 1-28.[2018-01-26]. https://onlinelibrary.wiley.com/doi/book/10.1002/0471790303.
|
[5] |
LIU K K, DONG H M, DENG Y. Recent advances on rapid detection of pesticides based on enzyme biosensor of nanomaterials[J/OL]. J Nanosci Nanotech, 2016, 16(7): 6648-6656.[2018-01-26]. https://doi.org/10.1166/jnn.2016.11392.
|
[6] |
WEN W, YAN X, ZHU C Z, et al. Recent advances in electrochemical immunosensors[J/OL]. Anal Chem, 2017, 89(1): 138-156.[2018-01-26]. https://pubs.acs.org/doi/abs/10.1021/acs.analchem.6b04281.
|
[7] |
KIM Y S, RASTON N H A, GU M B. Aptamer-based nanobiosensors[J/OL]. Biosens Bioelectron, 2016, 76: 2-19.[2018-01-26]. https://doi.org/10.1016/j.bios.2015.06.040.
|
[8] |
ZOU L, WU C S, WANG Q, et al. An improved sensitive assay for the detection of psp toxins with neuroblastoma cell-based impedance biosensor[J/OL]. Biosens Bioelectron, 2015, 67: 458-464.[2018-01-26]. https://doi.org/10.1016/j.bios.2014.09.005.
|
[9] |
LIU L, ZHAI J F, ZHU C Z, et al. One-pot synthesis of 3-dimensional reduced graphene oxide-based hydrogel as support for microbe immobilization and BOD biosensor preparation[J/OL]. Biosens Bioelectron, 2015, 63: 483-489.[2018-01-26]. https://doi.org/10.1016/j.bios.2014.07.074.
|
[10] |
TIWARI J N, VIJ V, KEMP K C, et al. Engineered carbon-nanomaterial-based electrochemical sensors for biomolecules[J/OL]. Acs Nano, 2016, 10(1): 46-80.[2018-01-26]. https://pubs.acs.org/doi/abs/10.1021/acsnano.5b05690.
|
[11] |
YOO S M, LEE S Y. Optical biosensors for the detection of pathogenic microorganisms[J/OL]. Trends Biotech, 2016, 34(1): 7-25.[2018-01-26]. https://doi.org/10.1016/j.tibtech.2015.09.012.
|
[12] |
BUNDE R L, JARVI E J, ROSENTRETER J J. Piezoelectric quartz crystal biosensors[J/OL]. Talanta, 1998, 46(6): 1223-1236.[2018-01-26]. https://doi.org/10.1016/S0039-9140(97)00392-5.
|
[13] |
LEE S, HYUN LEE J, KIM M G, et al. Bi nanowire-based thermal biosensor for the detection of salivary cortisol using the thomson effect[J/OL]. Appl Phys Lett, 2013, 103(14): 143114.[2018-01-26]. https://aip.scitation.org/doi/full/10.1063/1.4833029.
|
[14] |
VERMA N, BHARDWAJ A. Biosensor technology for pesticides: a review[J/OL]. Appl Biochem Biotechnol, 2015, 175(6): 3093-3119.[2018-01-26]. https://link.springer.com/article/10.1007/s12010-015-1489-2.
|
[15] |
LIU T, SU H C, QU X J, et al. Acetylcholinesterase biosensor based on 3-carboxyphenylboronic acid/reduced graphene oxide-gold nanocomposites modified electrode for amperometric detection of organophosphorus and carbamate pesticides[J/OL]. Sensor Actuat B-Chem, 2011, 160(1): 1255-1261.[2018-01-26]. https://doi.org/10.1016/j.snb.2011.09.059.
|
[16] |
DUTTA R R, PUZARI P. Amperometric biosensing of organophosphate and organocarbamate pesticides utilizing polypyrrole entrapped acetylcholinesterase electrode[J/OL]. Biosens Bioelectron, 2014, 52: 166-172.[2018-01-26]. https://doi.org/10.1016/j.bios.2013.08.050.
|
[17] |
MISHRA R K, HUBBLE L J, MART N A, et al. Wearable flexible and stretchable glove biosensor for on-site detection of organophosphorus chemical threats[J/OL]. ACS Sensors, 2017, 2(4): 553-561.[2018-01-26]. https://pubs.acs.org/doi/abs/10.1021/acssensors.7b00051.
|
[18] |
CABALLERO-DIAZ E, BENITEZ-MARTINEZ S, VALCARCEL M. Rapid and simple nanosensor by combination of graphene quantum dots and enzymatic inhibition mechanisms[J/OL]. Sensor Actuat B-Chem, 2017, 240: 90-99.[2018-01-26]. https://doi.org/10.1016/j.snb.2016.08.153.
|
[19] |
CHANG J F, LI H Y, HOU T, et al. Paper-based fluorescent sensor for rapid naked-eye detection of acetylcholinesterase activity and organophosphorus pesticides with high sensitivity and selectivity[J/OL]. Biosens Bioelectron, 2016, 86: 971-977.[2018-01-26]. https://doi.org/10.1016/j.bios.2016.07.022.
|
[20] |
HADDAOUI M, RAOUAFI N. Chlortoluron-induced enzymatic activity inhibition in tyrosinase/ZnO NPs/spce biosensor for the detection of ppb levels of herbicide[J/OL]. Sensor Actuat B-Chem, 2015, 219: 171-178.[2018-01-26]. https://doi.org/10.1016/j.snb.2015.05.023.
|
[21] |
ROCABOY-FAQUET E, BARTHELMEBS L, CALAS-BLANCHARD C, et al. A novel amperometric biosensor for β-triketone herbicides based on hydroxyphenylpyruvate dioxygenase inhibition: A case study for sulcotrione[J/OL]. Talanta, 2016, 146: 510-516.[2018-01-26]. https://doi.org/10.1016/j.talanta.2015.09.030.
|
[22] |
REYNOSO E C, TORRES E, BETTAZZI F, et al. Trends and perspectives in immunosensors for determination of currently-used pesticides: The case of glyphosate, organophosphates, and neonicotinoids[J/OL]. Biosensors, 2019, 9(1): 20.[2018-01-26]. https://doi.org/10.3390/bios9010020.
|
[23] |
MEHTA J, VINAYAK P, TUTEJA S K, et al. Graphene modified screen printed immunosensor for highly sensitive detection of parathion[J/OL]. Biosens Bioelectron, 2016, 83: 339-346.[2018-01-26]. https://doi.org/10.1016/j.bios.2016.04.058.
|
[24] |
HOMOLA J, YEE S S, GAUGLITZ G. Surface plasmon resonance sensors: review[J/OL]. Sensor Actuat B-Chem, 1999, 54(1-2): 3-15.[2018-01-26]. https://doi.org/10.1016/S0925-4005(98)00321-9.
|
[25] |
GUO Y R, LIU R, LIU Y, et al. A non-competitive surface plasmon resonance immunosensor for rapid detection of triazophos residue in environmental and agricultural samples[J/OL]. Sci Total Environ, 2018, 613: 783-791.[2018-01-26]. https://doi.org/10.1016/j.scitotenv.2017.09.157.
|
[26] |
LIU G, GUO W Q, SONG D D. A multianalyte electrochemical immunosensor based on patterned carbon nanotubes modified substrates for detection of pesticides[J/OL]. Biosens Bioelectron, 2014, 52: 360-366.[2018-01-26]. https://doi.org/10.1016/j.bios.2013.09.009.
|
[27] |
HERMANN T, PATEL D J. Adaptive recognition by nucleic acid aptamers[J/OL]. Science, 2000, 287(5454): 820-825.[2018-01-26]. https://doi.org/10.1126/science.287.5454.820.
|
[28] |
LIU X F, ZHANG X W. Aptamer-based technology for food analysis[J/OL]. Appl Biochem Biotechnol, 2015, 175(1): 603-624.[2018-01-26]. https://link.springer.com/article/10.1007/s12010-014-1289-0.
|
[29] |
HE J A, LIU Y A, FAN M T, et al. Isolation and identification of the DNA aptamer target to acetamiprid[J/OL]. J Agr Food Chem, 2011, 59(5): 1582-1586.[2018-01-26]. https://pubs.acs.org/doi/abs/10.1021/jf104189g.
|
[30] |
LAN L Y, YAO Y A, PING J F, et al. Recent progress in nanomaterial-based optical aptamer assay for the detection of food chemical contaminants[J/OL]. Acs Appl Mater Interfaces, 2017, 9(28): 23287-23301.[2018-01-26]. http://pubs.acs.org/doi/10.1021/acsami.7b03937.
|
[31] |
BALA R, KUMAR M, BANSAL K, et al. Ultrasensitive aptamer biosensor for malathion detection based on cationic polymer and gold nanoparticles[J/OL]. Biosens Bioelectron, 2016, 85: 445-449.[2018-01-26]. https://doi.org/10.1016/j.bios.2016.05.042.
|
[32] |
EISSA S, ZOUROB M. Selection and characterization of DNA aptamers for electrochemical biosensing of carbendazim[J/OL]. Anal Chem, 2017, 89(5): 3138-3145.[2018-01-26]. http://pubs.acs.org/doi/abs/10.1021/acs.analchem.6b04914.
|
[33] |
PARVEZ S, VENKATARAMAN C, MUKHERJI S. A review on advantages of implementing luminescence inhibition test (vibrio fischeri) for acute toxicity prediction of chemicals[J/OL]. Environ Int, 2006, 32(2): 265-268.[2018-01-26]. https://doi.org/10.1016/j.envint.2005.08.022.
|
[34] |
KUMAR J, D'SOUZA S F. An optical microbial biosensor for detection of methyl parathion using Sphingomonas sp. immobilized on microplate as a reusable biocomponent[J/OL]. Biosens Bioelectron, 2010, 26(4): 1292.[2018-01-26]. https://doi.org/10.1016/j.bios.2010.07.016.
|
[35] |
RANJAN R, RASTOGI N K, THAKUR M S. Development of immobilized biophotonic beads consisting of photobacterium leiognathi for the detection of heavy metals and pesticide[J/OL]. J Hazard Mater, 2012, 225: 114-123.[2018-01-26]. https://doi.org/10.1016/j.jhazmat.2012.04.076.
|
[36] |
MISHRA A, KUMAR J, MELO J S. An optical microplate biosensor for the detection of methyl parathion pesticide using a biohybrid of sphingomonas sp cells-silica nanoparticles[J/OL]. Biosens Bioelectron, 2017, 87: 332-338.[2018-01-26]. https://doi.org/10.1016/j.bios.2016.08.048.
|
[37] |
NIE S M, EMERY S R. Probing single molecules and single nanoparticles by surface-enhanced raman scattering[J/OL]. Science, 1997, 275(5303): 1102-1106.[2018-01-26]. https://science.sciencemag.org/content/275/5303/1102.
|
[38] |
FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver electrode[J/OL]. Chem Phys Lett, 1974, 26(2): 163-166.[2018-01-26]. https://doi.org/10.1016/0009-2614(74)85388-1.
|
[39] |
WANG P, WU L, LU Z C, et al. Gecko-inspired nanotentacle surface-enhanced raman spectroscopy substrate for sampling and reliable detection of pesticide residues in fruits and vegetables[J/OL]. Anal Chem, 2017, 89(4): 2424-2431.[2018-01-26]. http://pubs.acs.org/doi/10.1021/acs.analchem.6b04324.
|
[40] |
ZHANG H, SUN L, ZHANG Y, et al. Production of stable and sensitive sers substrate based on commercialized porous material of silanized support[J/OL]. Talanta, 2017, 174: 301-306.[2018-01-26]. https://doi.org/10.1016/j.talanta.2017.06.025.
|
[41] |
LIU Z G, WANG Y, DENG R, et al. Fe3O4@graphene oxide@Ag particles for surface magnet solid-phase extraction surface-enhanced raman scattering (SMSPE-SERS): from sample pretreatment to detection all-in-one[J]. Acs Appl Mater Interfaces, 2016, 8(22): 14160-14168.[2018-01-26]. http://pubs.acs.org/doi/abs/10.1021/acsami.6b02944.
|
[42] |
LI B, SHI Y E, CUI J C, et al. Au-coated ZnO nanorods on stainless steel fiber for self-cleaning solid phase microextraction-surface enhanced raman spectroscopy[J/OL]. Anal Chim Acta, 2016, 923: 66-73.[2018-01-26]. http://dx.doi.org/10.1016/j.aca.2016.04.002.
|
[43] |
EL ALAMI A, LAGARDE F, TAMER U, et al. Enhanced raman spectroscopy coupled to chemometrics for identification and quantification of acetylcholinesterase inhibitors[J/OL]. Vib Spectrosc, 2016, 87: 27-33.[2018-01-26]. https://doi.org/10.1016/j.vibspec.2016.09.005.
|
[44] |
NIE Y H, TENG Y J, LI P, et al. Label-free aptamer-based sensor for specific detection of malathion residues by surface-enhanced raman scattering[J/OL]. Spectrochim acta A, 2017, 191: 271-276.[2018-01-26]. https://doi.org/10.1016/j.saa.2017.10.030.
|
[45] |
GONZALEZ-MARTIN M I, REVILLA I, VIVAR-QUINTANA A M, et al. Pesticide residues in propolis from spain and chile. An approach using near infrared spectroscopy[J/OL]. Talanta, 2017, 165: 533-539.[2018-01-26]. https://doi.org/10.1016/j.talanta.2016.12.061.
|
[46] |
SALGUERO-CHAPARRO L, GAIT N-JURADO A J, ORTIZ-SOMOVILLA V, et al. Feasibility of using nir spectroscopy to detect herbicide residues in intact olives[J/OL]. Food Control, 2013, 30(2): 504-509.[2018-01-26]. https://doi.org/10.1016/j.foodcont.2012.07.045.
|
[47] |
ZHENG X M, MCLAUGHLIN C V, CUNNINGHAM P, et al. Organic broadband terahertz sources and sensors[J/OL]. J Nanoelectron Optoelectron, 2007, 2(1): 58-76.[2018-01-26]. https://doi.org/10.1166/jno.2007.005.
|
[48] |
XU W, XIE L J, ZHU J F, et al. Terahertz sensing of chlorpyrifos-methyl using metamaterials[J/OL]. Food Chem, 2017, 218: 330-334.[2018-01-26]. https://doi.org/10.1016/j.foodchem.2016.09.032.
|
[49] |
QIN B Y, LI Z, LUO Z H, et al. Terahertz time-domain spectroscopy combined with pca-cfsfdp applied for pesticide detection[J/OL]. Opt Quant Electron, 2017, 49(7): 244.[2018-01-26]. https://link.springer.com/article/10.1007/s11082-017-1080-x.
|
[50] |
RUSAK D A, CASTLE B C, SMITH B W, et al. Fundamentals and applications of laser-induced breakdown spectroscopy[J/OL]. Critical Reviews In Analytical Chemistry, 1997, 27(4): 257-290.[2018-01-26]. https://doi.org/10.1080/10408349708050587.
|
[51] |
MARKIEWICZ-KESZYCKA M, CAMA-MONCUNILL X, CASADO-GAVALDA M P, et al. Laser-induced breakdown spectroscopy (libs) for food analysis: A review[J/OL]. Trends Food Sci Tech, 2017, 65: 80-93.[2018-01-26]. https://doi.org/10.1016/j.jpgs.2017.05.005.
|
[52] |
DU X F, DONG D M, ZHAO X D, et al. Detection of pesticide residues on fruit surfaces using laser induced breakdown spectroscopy[J/OL]. RSC Adv, 2015, 5(97): 79956-79963.[2018-01-26]. http://dx.doi.org/10.1039/c5ra12461a.
|
[53] |
MULTARI R A, CREMERS D A, SCOTT T, et al. Detection of pesticides and dioxins in tissue fats and rendering oils using laser-induced breakdown spectroscopy (libs)[J/OL]. J Agric Food Chem, 2013, 61(10): 2348-2357.[2018-01-26]. https://pubs.acs.org/doi/abs/10.1021/jf304589s.
|
[54] |
GIOKAS D L, VLESSIDIS A G, TSOGAS G Z, et al. Nanoparticle-assisted chemiluminescence and its applications in analytical chemistry[J/OL]. Trac-Trends In Analytical Chemistry, 2010, 29(10): 1113-1126.[2018-01-26]. https://doi.org/10.1016/j.trac.2010.07.001.
|
[55] |
ZHANG W B, WEI M, SONG W, et al. Evaluation of pyridaben residues on fruit surfaces and their stability by a novel on-line dual-frequency ultrasonic device and chemiluminescence detection[J/OL]. J Agric Food Chem, 2017, 65(44): 9799-9806.[2018-01-26]. http://pubs.acs.org/doi/10.1021/acs.jafc.7b03357.
|
[56] |
KHATAEE A, HASSANZADEH J, LOTFI R. A graphene quantum dot-assisted morin-kmno4 chemiluminescence system for the precise recognition of cypermethrin[J/OL]. New J Chem, 2017, 41(19): 10668-10676.[2018-01-26]. http://dx.doi.org/10.1039/C7NJ02343J.
|
[57] |
LIU W, KOU J, XING H Z, et al. Paper-based chromatographic chemiluminescence chip for the detection of dichlorvos in vegetables[J/OL]. Biosens Bioelectron, 2014, 52: 76-81.[2018-01-26]. https://doi.org/10.1016/j.bios.2013.08.024.
|
[58] |
BAGHERI N, KHATAEE A, HASSANZADEH, J, et al. Highly sensitive chemiluminescence sensing system for organophosphates using mimic LDH supported ZIF-8 nanocomposite [J/OL]. Sensor Actuat B-Chem, 2019, 284:220-227. [2018-01-26]. https://doi.org/10.1016/j.snb.2018.12.147.
|
[59] |
ALAMO BUSA L S, MOHAMMADI S, MAEKI M, et al. Advances in microfluidic paper-based analytical devices for food and water analysis[J/OL]. Micromachines, 2016, 7(5): 86.[2018-01-26]. https://doi.org/10.3390/mi7050086.
|
[60] |
TAHIRBEGI I B, EHGARTNER J, SULZER P, et al. Fast pesticide detection inside microfluidic device with integrated optical pH, oxygen sensors and algal fluorescence[J/OL]. Biosens Bioelectron, 2017, 88: 188-195.[2018-01-26]. https://doi.org/10.1016/j.bios.2016.08.014.
|
[61] |
WANG J, SUZUKI H, SATAKE T. Coulometric microdevice for organophosphate pesticide detection[J/OL]. Sensor Actuat B-Chem, 2014, 204: 297-301.[2018-01-26]. https://doi.org/10.1016/j.snb.2014.06.115.
|
[62] |
HUANG C, CHENG Y, GAO Z W, et al. Portable label-free inverse opal photonic hydrogel particles serve as facile pesticides colorimetric monitoring[J/OL]. Sensor Actuat B-Chem, 2018, 273: 1705-1712.[2018-01-26]. https://doi.org/10.1016/j.snb.2018.07.050.
|
[63] |
PEREZ-FERNANDEZ V, ROCCA L M, TOMAI P, et al. Recent advancements and future trends in environmental analysis: sample preparation, liquid chromatography and mass spectrometry[J/OL]. Analytica Chimica Acta, 2017, 983: 9-41.[2018-01-26]. https://doi.org/10.1016/j.aca.2017.06.029.
|
[64] |
RIZZETTI T M, KEMMERICH M L, MARTINS M L, et al. Optimization of a QuEChERS based method by means of central composite design for pesticide multiresidue determination in orange juice by UHPLC-MS/MS[J/OL]. Food Chem, 2016, 196: 25-33.[2018-01-26]. https://doi.org/10.1016/j.foodchem.2015.09.010.
|
[65] |
ZOLTAN T, WISEMAN J M, BOGDAN G, et al. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization[J/OL]. Science, 2004, 306(5695): 471-473.[2018-01-26]. http://dx.doi.org/10.3410/f.1023228.267660.
|
[66] |
PU F, ZHANG W, HAN C, et al. Fast quantitation of pyrazole fungicides in wine by ambient ionization mass spectrometry[J/OL]. Anal Methods-UK, 2017, 9(34): 5058-5064.[2018-01-26]. http://dx.doi.org/10.1039/c7ay01534h.
|
[67] |
GUO T Y, Yong W, DONG Y Y. Automatically high-throughput quantification by paper spray ionization mass spectrometry for multiple pesticides in wine [J/OL]. Food Analytical Methods, 2019, 12(5):1208-1217.[2019-09-18]. https://doi.org/10.1007/s12161-019-01450-6.
|
[68] |
WANG J Q, DU Q, YOU X R, et al. Solvent-free high-throughput analysis of herbicides in environmental water [J/OL]. Analytica Chimica Acta, 2019, 1071:8-16.[2019-09-18]. https://doi.org/10.1016/j.aca.2019.04.024.
|
[69] |
PEREIRA I, RODRIGUES M F, CHAVES A R, et al. Molecularly imprinted polymer (MIP) membrane assisted direct spray ionization mass spectrometry for agrochemicals screening in foodstuffs[J/OL]. Talanta, 2018, 178: 507-514.[2018-01-26]. https://doi.org/10.1016/j.talanta.2017.09.080.
|
[70] |
黄宝勇, 欧阳喜辉, 孙江, 等. 大气压固体分析探头离子源-串联质谱法快速检测蔬菜中多种农药残留[J]. 高等学校化学学报, 2013, 34(7): 1591-1597.HUANG B Y, OUYANG X H, SUN J, et al. Rapid quantification of 13 pesticides in vegetables by atmospheric-pressure solids analysis probe (ASAP) coupled to tandem mass spectrometry[J]. Chem J Chin Univ, 2013, 34(7): 1591-1597.
|