• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面活性剂调控农药药液对靶润湿沉积研究进展

张晨辉 马悦 杜凤沛

张晨辉, 马悦, 杜凤沛. 表面活性剂调控农药药液对靶润湿沉积研究进展[J]. 农药学学报, 2019, 21(5-6): 883-894. doi: 10.16801/j.issn.1008-7303.2019.0100
引用本文: 张晨辉, 马悦, 杜凤沛. 表面活性剂调控农药药液对靶润湿沉积研究进展[J]. 农药学学报, 2019, 21(5-6): 883-894. doi: 10.16801/j.issn.1008-7303.2019.0100
ZHANG Chenhui, MA Yue, DU Fengpei. Research progress on the wetting and deposition behaviors of pesticide droplet on target surfaces with the addition of surfactants[J]. Chinese Journal of Pesticide Science, 2019, 21(5-6): 883-894. doi: 10.16801/j.issn.1008-7303.2019.0100
Citation: ZHANG Chenhui, MA Yue, DU Fengpei. Research progress on the wetting and deposition behaviors of pesticide droplet on target surfaces with the addition of surfactants[J]. Chinese Journal of Pesticide Science, 2019, 21(5-6): 883-894. doi: 10.16801/j.issn.1008-7303.2019.0100

表面活性剂调控农药药液对靶润湿沉积研究进展

doi: 10.16801/j.issn.1008-7303.2019.0100
基金项目: 国家重点研发计划 (2017YFD0200302)
详细信息
    作者简介:

    张晨辉,男,博士,讲师,主要从事农药对靶剂量传递调控机制等研究工作,E-mail:zhch@cau.edu.cn

    通讯作者:

    杜凤沛,通信作者 (Author for correspondence),男,博士,教授,主要从事绿色农药制剂、绿色农药功能助剂及化学农药减施增效等研究工作,E-mail:dufp@cau.edu.cn 

  • 中图分类号: S482.92;TQ450.6

Research progress on the wetting and deposition behaviors of pesticide droplet on target surfaces with the addition of surfactants

  • 摘要: 农药药液对靶润湿沉积是剂量传递体系中的重要过程。在农药制剂中添加适宜的表面活性剂,可提高药液在靶标表面的润湿沉积,进而实现农药有效成分的渗透和传输,提高防治效果。文章综述了靶标界面结构性质的相关研究进展,探讨了表面化学成分和表面拓扑形貌对固体表观表面自由能的影响,并分别阐述了不同表面活性剂对药液在表面化学成分均一的光滑固体表面、粗糙固体表面以及表面化学成分复杂的植物叶片表面的润湿沉积行为,探索了农药制剂研发的新思路和新方法,以期为提高农药有效利用率,实现减施增效目标提供理论依据。
  • 图  1  液滴在靶标表面的剂量传递过程

    Figure  1.  The dose transmission system of pesticide droplet on target surfaces

    图  2  表面活性剂Triton X-100 (A)、SDS (B) 及DTAB (C) 分子在小麦叶片近轴面的吸附机理示意图[46]

    注:随着表面活性剂浓度增加,非离子表面活性剂Triton X-100实现由Cassie-Baxter状态向Wenzel状态转变;阴离子表面活性剂SDS和阳离子表面活性剂DTAB实现由Cassie-Baxter状态向Wenzel和Cassie-Baxter过渡态转变。

    Figure  2.  Schematic model of surfactant molecules of Triton X-100 (A), SDS (B), DTAB (C) adsorbed at adaxial part of wheat leaf surfaces[46]

    Note: With the concentration of surfactant solution increasing, the wetting state of nonionic surfactant Triton X-100 tansfers from the Cassie-Baxter state to the Wenzel state, while the wetting state of anion surfactant SDS and cationic DTAB tansfer from the Cassie-Baxter state to the transition state.

    图  3  不同浓度下 Triton X-100溶液在水稻叶片表面润湿铺展动力学机理示意图[75]

    A. 浓度小于临界胶束浓度(CMC);B. 浓度大于临界胶束浓度而小于临界润湿浓度(CWC);C. 浓度大于临界润湿浓度。 A. Concentration is less than critical micelle concentration (CMC) ; B. Concentration is larger than critical micelle concentration and less than critical wetting concentration (CWC) ; C. Concentration is larger than critical wetting concentration. 注:TX-100为非离子表面活性剂Triton X-100, 为三相线, 为水稻叶片表面形貌,α1为快速铺展阶段的铺展指数,α2为缓慢铺展阶段的铺展指数。随着表面活性剂浓度增加,表面活性剂分子在三相线处吸附从消耗到缓慢补充再到快速补充,加快液滴铺展。

    Figure  3.  Schematic model of Triton X-100 concentration controlled spreading behavior on rice leaves[75]

    Note: TX-100 represents nonionic surfactant Triton X-100, represents three phase contact line, represents rice leaf surface, α1 represents spreading exponent in fast spreading stage, α2 represents spreading exponent in slow spreading stage. With the concentration of surfactant solution increasing, the molecules adsorb on the three phase contact line from depletion, slow replenishment to fast replenishment for accelataring the droplet spread.

    图  4  添加表面活性剂对液滴在超疏水表面飞溅的抑制机理示意图[79]

    A. 水;B. 胶束;C. 囊泡。 A. Water; B. The surfactants in the micelle region; C. The surfactants in the vesicel region. 注:为甘蓝叶片表面微纳米结构,为甘蓝叶片表面纳米结构,为胶束,为囊泡,为亲水基团,为疏水基团。液滴撞击叶片表面经历了铺展、回缩至最终状态。

    Figure  4.  Schematic model of splash inhibition on the superhydrophobic surface by surfactant additives[79]

    Note: represents the microstructure/nanostructure of cabbage leaf surface, represents the nanostructure of cabbage leaf surface, represents micelle, represents vesicle, represents hydropphilic group, represents hydrophobic group. While the droplet inpacts on the leaf surface, it undergoes spearding and receding to the final stage.

  • [1] BREWER C A, SMITH W K, VOGELMANN T C. Functional interaction between leaf trichomes, leaf wettability and the optical properties of water droplets[J]. Plant, Cell & Environ, 1991, 14(9): 955-962.
    [2] JOHNSON R M, PEPPERMAN A B. Leaching of alachlor from alginate-encapsulated controlled-release formulations[J]. Pestic Sci, 1996, 48(2): 157-164. doi: 10.1002/(SICI)1096-9063(199610)48:2<157::AID-PS454>3.0.CO;2-2
    [3] 杨普云, 王凯, 厉建萌, 等. 以农药减量控害助力农业绿色发展[J]. 植物保护, 2018, 44(5): 95-100.

    YANG P Y, WANG K, LI J M, et al. Promoting green agricultural development through eliminating pesticide overuses in crop pest management[J]. Plant Prot, 2018, 44(5): 95-100.
    [4] 陈晓明, 王程龙, 薄瑞. 中国农药使用现状及对策建议[J]. 农药科学与管理, 2016, 37(2): 4-8. doi: 10.3969/j.issn.1002-5480.2016.02.002

    CHEN X M, WANG C L, BO R. Current situation of Chinese pesticide application and policy suggestions[J]. Pestic Sci Admin, 2016, 37(2): 4-8. doi: 10.3969/j.issn.1002-5480.2016.02.002
    [5] ZHAO X, CUI H X, WANG Y, et al. Development strategies and prospects of nano-based smart pesticide formulation[J]. J Agric Food Chem, 2018, 66(26): 6504-6512. doi: 10.1021/acs.jafc.7b02004
    [6] 吴孔明. 中国农作物病虫害防控科技的发展方向[J]. 农学学报, 2018, 8(1): 35-38.

    WU K M. Development direction of crop pest control science and technology in China[J]. J Agric, 2018, 8(1): 35-38.
    [7] TAYLOR P. The wetting of leaf surfaces[J]. Curr Opin Colloid Interface Sci, 2011, 16(4): 326-334. doi: 10.1016/j.cocis.2010.12.003
    [8] DAMAK M, MAHMOUDI S R, HYDER M N, et al. Enhancing droplet deposition through in situ precipitation[J]. Nat Commun, 2016, 7: 12560. doi: 10.1038/ncomms12560
    [9] 屠豫钦. 农药剂型和制剂与农药的剂量转移[J]. 农药学学报, 1999, 1(1): 1-6.

    TU Y Q. Pesticide formulation and dose transfer[J]. Chin J Pestic Sci, 1999, 1(1): 1-6.
    [10] HU X Z, GONG H N, LI Z Y, et al. What happens when pesticides are solubilized in nonionic surfactant micelles[J]. J Colloid Interface Sci, 2019, 541: 175-182. doi: 10.1016/j.jcis.2019.01.056
    [11] GRUNDKE K, PÖSCHEL K, SYNYTSKA A, et al. Experimental studies of contact angle hysteresis phenomena on polymer surfaces: toward the understanding and control of wettability for different applications[J]. Adv Colloid Interface Sci, 2015, 222: 350-376. doi: 10.1016/j.cis.2014.10.012
    [12] KOVALCHUK N M, TRYBALA A, STAROV V, et al. Fluoro- vs hydrocarbon surfactants: why do they differ in wetting performance?[J]. Adv Colloid Interface Sci, 2014, 210: 65-71. doi: 10.1016/j.cis.2014.04.003
    [13] CAI T M, JIA Z H, YANG H N, et al. Investigation of Cassie-Wenzel wetting transitions on microstructured surfaces[J]. Colloid Polym Sci, 2016, 294(5): 833-840. doi: 10.1007/s00396-016-3836-4
    [14] LAFUMA A, QUERE D. Superhydrophobic states[J]. Nat Mater, 2003, 2(7): 457-460. doi: 10.1038/nmat924
    [15] YARIN A L. Drop impact dynamics: splashing, spreading, receding, bouncing[J]. Annu Rev Fluid Mech, 2006, 38: 159-192. doi: 10.1146/annurev.fluid.38.050304.092144
    [16] RICHARD D, QUERE D. Bouncing water drops[J]. EPL, 2000, 50(6): 769-775. doi: 10.1209/epl/i2000-00547-6
    [17] KOCH K, BHUSHAN B, BARTHLOTT W. Diversity of structure, morphology and wetting of plant surfaces[J]. Soft Matter, 2008, 4(10): 1943-1963. doi: 10.1039/b804854a
    [18] KOCH K, BHUSHAN B, BARTHLOTT W. Multifunctional surface structures of plants: an inspiration for biomimetics[J]. Prog Mater Sci, 2009, 54(2): 137-178. doi: 10.1016/j.pmatsci.2008.07.003
    [19] CHACHALIS D, REDDY K N, ELMORE C D. Characterization of leaf surface, wax composition, and control of redvine and trumpetcreeper with glyphosate[J]. Weed Sci, 2001, 49(2): 156-163. doi: 10.1614/0043-1745(2001)049[0156:COLSWC]2.0.CO;2
    [20] MAO B G, CHENG Z J, LEI C L, et al. Wax crystal-sparse leaf 2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax[J]. Planta, 2012, 235(1): 39-52. doi: 10.1007/s00425-011-1481-1
    [21] KIM K S, PARK S H, JENKS M A. Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit[J]. J Plant Physiol, 2007, 164(9): 1134-1143. doi: 10.1016/j.jplph.2006.07.004
    [22] KOCH K, HARTMANN K D, SCHREIBER L, et al. Influences of air humidity during the cultivation of plants on wax chemical composition, morphology and leaf surface wettability[J]. Environ Exp Bot, 2006, 56(1): 1-9. doi: 10.1016/j.envexpbot.2004.09.013
    [23] JENKS M A, GASTON C H, GOODWIN M S, et al. Seasonal variation in cuticular waxes on Hosta genotypes differing in leaf surface glaucousness[J]. HortScience, 2002, 37(4): 673-677. doi: 10.21273/HORTSCI.37.4.673
    [24] VAN MAARSEVEEN C, JETTER R. Composition of the epicuticular and intracuticular wax layers on Kalanchoe daigremontiana (hamet et perr. de la bathie) leaves[J]. Phytochemistry, 2009, 70(7): 899-906. doi: 10.1016/j.phytochem.2009.04.011
    [25] WANG Y, WANG J H, CHAI G Q, et al. Developmental changes in composition and morphology of cuticular waxes on leaves and spikes of glossy and glaucous wheat (Triticum aestivum L.)[J]. PLoS One, 2015, 10(10): e141239.
    [26] NAIRN J J, FORSTER W A, VAN LEEUWEN R M. Effect of solution and leaf surface polarity on droplet spread area and contact angle[J]. Pest Manag Sci, 2016, 72(3): 551-557. doi: 10.1002/ps.4022
    [27] HUNSCHE M, BRINGE K, SCHMITZ-EIBERGER M, et al. Leaf surface characteristics of apple seedlings, bean seedlings and kohlrabi plants and their impact on the retention and rainfastness of mancozeb[J]. Pest Manag Sci, 2006, 62(9): 839-847. doi: 10.1002/ps.1242
    [28] MA Y, HAO J, ZHAO K F, et al. Biobased polymeric surfactant: natural glycyrrhizic acid-appended homopolymer with multiple pH-responsiveness[J]. J Colloid Interface Sci, 2019, 541: 93-100. doi: 10.1016/j.jcis.2019.01.088
    [29] MA Y, GAO Y X, ZHAO X, et al. A natural triterpene saponin-based pickering emulsion[J]. Chem Eur J, 2018, 24(45): 11703-11710. doi: 10.1002/chem.201801619
    [30] ZHAO X, ZHU Y Q, ZHANG C H, et al. Positive charge pesticide nanoemulsions prepared by the phase inversion composition method with ionic liquids[J]. RSC Adv, 2017, 7(77): 48586-48596. doi: 10.1039/C7RA08653A
    [31] LI X M, REINHOUDT D, CREGO-CALAMA M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces[J]. Chem Soc Rev, 2007, 36(8): 1350-1368. doi: 10.1039/b602486f
    [32] WANG S T, LIU K S, YAO X, et al. Bioinspired surfaces with superwettability: new insight on theory, design, and applications[J]. Chem Rev, 2015, 115(16): 8230-8293. doi: 10.1021/cr400083y
    [33] WANG Y, WANG A Q, WANG C X, et al. Synthesis and characterization of emamectin-benzoate slow-release microspheres with different surfactants[J]. Sci Rep, 2017, 7: 12761. doi: 10.1038/s41598-017-12724-6
    [34] 曹五七, 李逊, 谢林, 等. 杂种棉花叶片气孔形态及数量的扫描电镜观察[J]. 四川农业大学学报, 1995, 13(2): 158-160.

    CAO W Q, LI X, XIE L, et al. Observation of hybrid cotton leave stoma with scanning electron microscope[J]. J Sichuan Agric Univ, 1995, 13(2): 158-160.
    [35] WU D, WANG J N, WU S Z, et al. Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding[J]. Adv Funct Mater, 2011, 21(15): 2927-2932. doi: 10.1002/adfm.201002733
    [36] RIEDEL M, EICHNER A, JETTER R. Slippery surfaces of carnivorous plants: composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers[J]. Planta, 2003, 218(1): 87-97. doi: 10.1007/s00425-003-1075-7
    [37] GOU X L, GUO Z G. Superhydrophobic plant leaves: the variation in surface morphologies and wettability during the vegetation period[J]. Langmuir, 2019, 35(4): 1047-1053. doi: 10.1021/acs.langmuir.8b03996
    [38] ZHAO K F, HU J, MA Y, et al. Topology-regulated pesticide retention on plant leaves through concave Janus carriers[J]. ACS Sustainable Chem Eng, 2019, 7(15): 13148-13156. doi: 10.1021/acssuschemeng.9b02319
    [39] CAI D Q, WANG L H, ZHANG G L, et al. Controlling pesticide loss by natural porous micro/nano composites: straw ash-based biochar and biosilica[J]. ACS Appl Mater Interfaces, 2013, 5(18): 9212-9216. doi: 10.1021/am402864r
    [40] ZENKIEWICZ M. Methods for the calculation of surface free energy of solids[J]. J Achieve Mater Manu Eng, 2007, 24(1): 137-145.
    [41] LO C C, HOPKINSON M. Influence of adjuvants on droplet spresding[C]//GASKYN R E, ed. Fourth international symposium on adjuvants for agrochemical, No. 193, 1995: 144-149.
    [42] PUENTE D W M, BAUR P. Wettability of soybean (Glycine max L.) leaves by foliar sprays with respect to developmental changes[J]. Pest Manag Sci, 2011, 67(7): 798-806. doi: 10.1002/ps.2116
    [43] 顾中言, 许小龙, 韩丽娟. 一些药液难在水稻、小麦和甘蓝表面润湿展布的原因分析[J]. 农药学学报, 2002, 4(2): 75-80. doi: 10.3321/j.issn:1008-7303.2002.02.013

    GU Z Y, XU X L, HAN L J. The cause of the difficulty in wet-spreading of some insecticides on rice, wheat and wild cabbage leaves[J]. Chin J Pestic Sci, 2002, 4(2): 75-80. doi: 10.3321/j.issn:1008-7303.2002.02.013
    [44] 范仁俊, 张晓曦, 周璐, 等. 利用 OWRK 法预测桃叶表面润湿性能的研究[J]. 农药学学报, 2011, 13(1): 79-83. doi: 10.3969/j.issn.1008-7303.2011.01.13

    FAN R J, ZHANG X X, ZHOU L, et al. Research on the wettability of peach leaf surfaces by OWRK method[J]. Chin J Pestic Sci, 2011, 13(1): 79-83. doi: 10.3969/j.issn.1008-7303.2011.01.13
    [45] ZHU Y Q, YU C X, LI Y, et al. Research on the changes in wettability of rice (Oryza sativa) leaf surfaces at different development stages using the OWRK method[J]. Pest Manag Sci, 2014, 70(3): 462-469. doi: 10.1002/ps.3594
    [46] ZHANG C H, ZHAO X, LEI J M, et al. The wetting behavior of aqueous surfactant solutions on wheat (Triticum aestivum) leaf surfaces[J]. Soft Matter, 2017, 13(2): 503-513. doi: 10.1039/C6SM02387H
    [47] 张晨辉, 赵欣, 雷津美, 等. 非离子表面活性剂 Triton X-100 溶液在不同生长期小麦叶片表面的润湿行为[J]. 物理化学学报, 2017, 33(9): 1846-1854. doi: 10.3866/PKU.WHXB201705051

    ZHANG C H, ZHAO X, LEI J M, et al. Wettability of Triton X-100 on wheat (Triticum aestivum) leaf surfaces with respect to developmental changes[J]. Acta Phys-Chimica Sinica, 2017, 33(9): 1846-1854. doi: 10.3866/PKU.WHXB201705051
    [48] GAO Y, GUO R F, FAN R J, et al. Wettability of pear leaves from three regions characterized at different stages after flowering using the OWRK method[J]. Pest Manag Sci, 2018, 74(8): 1804-1809. doi: 10.1002/ps.4878
    [49] ZHU F, CAO C, CAO L D, et al. Wetting behavior and maximum retention of aqueous surfactant solutions on tea leaves[J]. Molecules, 2019, 24(11): 2094. doi: 10.3390/molecules24112094
    [50] 郭瑞峰, 高越, 张鹏九, 等. 2.5% 高效氟氯氰菊酯水乳剂在苹果叶片表面的润湿性能[J]. 农药学学报, 2015, 17(2): 215-219. doi: 10.3969/j.issn.1008-7303.2015.02.14

    GUO R F, GAO Y, ZHANG P J, et al. Wettability of 2.5% beta-cyfluthrin emulsion in water on surface of apple leaves[J]. Chin J Pestic Sci, 2015, 17(2): 215-219. doi: 10.3969/j.issn.1008-7303.2015.02.14
    [51] 王潇楠, 刘艳萍, 王思威, 等. 助剂对 10% 苯醚甲环唑水分散粒剂在荔枝叶片表面润湿性能的影响[J]. 农药学学报, 2018, 20(6): 803-808.

    WANG X N, LIU Y P, WANG S W, et al. Effects on wettability of 10% difenoconazole water dispersible granule with adjuvants on litchi leaves[J]. Chin J Pestic Sci, 2018, 20(6): 803-808.
    [52] ZDZIENNICKA A, SZYMCZYK K, JAŃCZUK B. Correlation between surface free energy of quartz and its wettability by aqueous solutions of nonionic, anionic and cationic surfactants[J]. J Colloid Interface Sci, 2009, 340(2): 243-248. doi: 10.1016/j.jcis.2009.08.040
    [53] BOGDANOVA Y G, DOLZHIKOVA V D, SUMM B. Wetting of solids by aqueous solutions of surfactant binary mixtures: 2. wetting of high-energy surface[J]. Colloid Journal, 2003, 65(3): 290-294. doi: 10.1023/A:1024242419876
    [54] ZHANG L, WANG Z L, LI Z Q, et al. Wettability of a quartz surface in the presence of four cationic surfactants[J]. Langmuir, 2010, 26(24): 18834-18840. doi: 10.1021/la1036822
    [55] HU S S, ZHOU Z H, ZHANG L, et al. Adsorption behaviors of novel betaines on the wettability of the quartz surface[J]. Soft Matter, 2015, 11(40): 7960-7968. doi: 10.1039/C5SM01855B
    [56] SZYMCZYK K, ZDZIENNICKA A, KRAWCZYK J, et al. Correlation between wetting, adhesion and adsorption in the polymer-aqueous solutions of ternary surfactant mixtures-air systems[J]. Appl Surf Sci, 2014, 288: 488-496. doi: 10.1016/j.apsusc.2013.10.059
    [57] SZYMCZYK K, GONZALEZ-MARTIN M L, BRUQUE J M, et al. Effect of two hydrocarbon and one fluorocarbon surfactant mixtures on the surface tension and wettability of polymers[J]. J Colloid Interf Sci, 2014, 417(1): 180-187.
    [58] KRAWCZYK J, SZYMCZYK K, ZDZIENNICKA A, et al. Wettability of polymers by aqueous solution of binary surfactants mixture with regard to adhesion in polymer-solution system I: correlation between the adsorption of surfactants mixture and contact angle[J]. Int J Adhesion Adhesives, 2013, 45: 98-105. doi: 10.1016/j.ijadhadh.2013.05.001
    [59] KRAWCZYK J, SZYMCZYK K, ZDZIENNICKA A, et al. Wettability of polymers by aqueous solution of binary surfactants mixture with regard to adhesion in polymer-solution system II: critical surface tension of polymers wetting and work of adhesion[J]. Int J Adhesion Adhesives, 2013, 45: 106-111. doi: 10.1016/j.ijadhadh.2013.05.002
    [60] ZDZIENNICKA A, JAŃCZUK B. Behavior of cationic surfactants and short-chain alcohols in mixed surface layers at water-air and polymer-water interfaces with regard to polymer wettability[J]. J Colloid Interface Sci, 2010, 350(2): 568-576. doi: 10.1016/j.jcis.2010.06.026
    [61] PISAEV I V, SOBOLEVA O A, IVANOVA N I. Adsorption of Brij 35-dodecylpyridinium bromide mixtures at air-aqueous solution and teflon-aqueous solution interfaces[J]. Colloid J, 2009, 71(2): 246-251. doi: 10.1134/S1061933X09020148
    [62] BISWAL N R, PARIA S. Wetting of Triton X-100 and Igepal CO-630 surfactants on a PTFE surface[J]. Ind Eng Chem Res, 2011, 50(10): 6138-6145. doi: 10.1021/ie2000456
    [63] QUERE D. Wetting and roughness[J]. Annu Rev Mater Res, 2008, 38(1): 71-99. doi: 10.1146/annurev.matsci.38.060407.132434
    [64] BORMASHENKO E. Progress in understanding wetting transitions on rough surfaces[J]. Adv Colloid Interface Sci, 2015, 222: 92-103. doi: 10.1016/j.cis.2014.02.009
    [65] JUNG Y C, BHUSHAN B. Wetting transition of water droplets on superhydrophobic patterned surfaces[J]. Scr Mater, 2007, 57(12): 1057-1060. doi: 10.1016/j.scriptamat.2007.09.004
    [66] BHUSHAN B, JUNG Y C. Wetting study of patterned surfaces for superhydrophobicity[J]. Ultramicroscopy, 2007, 107(10-11): 1033-1041. doi: 10.1016/j.ultramic.2007.05.002
    [67] NASCIMENTO A E G, BARROS NETO E L, MOURA M C P A, et al. Wettability of paraffin surfaces by nonionic surfactants: evaluation of surface roughness and nonylphenol ethoxylation degree[J]. Colloid Surf A-Physicochem Eng Asp, 2015, 480: 376-383. doi: 10.1016/j.colsurfa.2014.11.003
    [68] HU Z Y, ZHANG X M, LIU Z Y, et al. Regulating water adhesion on superhydrophobic TiO2 nanotube arrays[J]. Adv Funct Mater, 2014, 24(40): 6381-6388. doi: 10.1002/adfm.201401462
    [69] KWON D H, HUH H K, LEE S J. Wettability and impact dynamics of water droplets on rice (Oryza sativa L.) leaves[J]. Exp Fluids, 2014, 55(3): 1691. doi: 10.1007/s00348-014-1691-y
    [70] HAO C L, LI J, LIU Y, et al. Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces[J]. Nat Commun, 2015, 6: 7986. doi: 10.1038/ncomms8986
    [71] LIU Y H, ANDREW M, LI J, et al. Symmetry breaking in drop bouncing on curved surfaces[J]. Nat Commun, 2015, 6: 10034. doi: 10.1038/ncomms10034
    [72] WANG R B, DORR G, HEWITT A, et al. Impacts of polymer/surfactant interactions on spray drift[J]. Colloids Surf A- Physicochem Eng Asp, 2015, 500: 88-97.
    [73] LIU Y H, MOEBIUS L, XU X P, et al. Pancake bouncing on superhydrophobic surfaces[J]. Nat Phys, 2014, 10(7): 515-519. doi: 10.1038/nphys2980
    [74] IVANOVA N A, STAROV V M. Wetting of low free energy surfaces by aqueous surfactant solutions[J]. Curr Opin Colloid Interface Sci, 2011, 16(4): 285-291. doi: 10.1016/j.cocis.2011.06.008
    [75] ZHU Y Q, GAO Y X, ZHANG C H, et al. Static and dynamic wetting behavior of TX-100 solution on super-hydrophobic rice (Oryza sativa.) leaf surfaces[J]. Colloids Surf A- Physicochem Eng Asp, 2018, 547: 148-156. doi: 10.1016/j.colsurfa.2018.03.008
    [76] MOUROUGOU-CANDONI N, PRUNET-FOCH B, LEGAY F, et al. Influence of dynamic surface tension on the spreading of surfactant solution droplets impacting onto a low-surface-energy solid substrate[J]. J Colloid Interface Sci, 1997, 192(1): 129-141. doi: 10.1006/jcis.1997.4989
    [77] BOUKHALFA H H, MASSINON M, BELHAMRA M, et al. Contribution of spray droplet pinning fragmentation to canopy retention[J]. Crop Prot, 2014, 56: 91-97. doi: 10.1016/j.cropro.2013.11.018
    [78] SONG M R, LIU Z H, MA Y J, et al. Reducing the contact time using macro anisotropic superhydrophobic surfaces-effect of parallel wire spacing on the drop impact[J]. NPG Asia Mater, 2017, 9: e415. doi: 10.1038/am.2017.122
    [79] SONG M R, JU J, LUO S Q, et al. Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant[J]. Sci Adv, 2017, 3(3): e1602188. doi: 10.1126/sciadv.1602188
    [80] TANG X L, DONG J F, LI X F. A comparison of spreading behaviors of Sliwet L-77 on dry and wet lotus leaves[J]. J Colloid Interface Sci, 2008, 325(1): 223-227. doi: 10.1016/j.jcis.2008.05.055
    [81] 朱金文, 周国军, 曹亚波, 等. 氟虫腈药液在水稻叶片上的沉积特性研究[J]. 农药学学报, 2009, 11(2): 250-254. doi: 10.3969/j.issn.1008-7303.2009.02.018

    ZHU J W, ZHOU G J, CAO Y B, et al. Characteristics of fipronil solution deposition on paddy rice (Oryza sativa) leaves[J]. Chin J Pestic Sci, 2009, 11(2): 250-254. doi: 10.3969/j.issn.1008-7303.2009.02.018
    [82] BERGERON V, BONN D, MARTIN J Y, et al. Controlling droplet deposition with polymer additives[J]. Nature, 2000, 405(6788): 772-775. doi: 10.1038/35015525
    [83] CHEN L Q, WANG Y G, PENG X Y, et al. Impact dynamics of aqueous polymer droplets on superhydrophobic surfaces[J]. Macromolecules, 2018, 51(19): 7817-7827. doi: 10.1021/acs.macromol.8b01589
    [84] SONG M R, HU D, ZHENG X F, et al. Enhancing droplet deposition on wired and curved superhydrophobic leaves[J]. ACS Nano, 2019, 13(7): 7966-7974. doi: 10.1021/acsnano.9b02457
    [85] ZANG D Y, WANG X L, GENG X G, et al. Impact dynamic of droplet with silica nanoparticles and polymer additives[J]. Soft Matter, 2013, 9(2): 394-400. doi: 10.1039/C2SM26759D
    [86] XIANG Y B, WANG M, SUN X, et al. Controlling pesticide loss through nanonetworks[J]. ACS Sustainable Chem Eng, 2014, 2(4): 918-924. doi: 10.1021/sc400513p
    [87] ZHAO L L, CAI D Q, HE L L, et al. Fabrication of a high-performance fertilizer to control the loss of water and nutrient using micro/nano networks[J]. ACS Sustainable Chem Eng, 2015, 3(4): 645-653. doi: 10.1021/acssuschemeng.5b00072
    [88] 卢向阳, 徐筠, 陈莉. 几种除草剂药液表面张力、叶面接触角与药效的相关性研究[J]. 农药学学报, 2002, 4(3): 67-71. doi: 10.3321/j.issn:1008-7303.2002.03.012

    LU X Y, XU J, CHEN L. Study on relationships between surface tension, contact angle and efficacy on weeds of several herbicide solutions[J]. Chin J Pestic Sci, 2002, 4(3): 67-71. doi: 10.3321/j.issn:1008-7303.2002.03.012
    [89] 卢向阳, 徐筠. 两种喷雾助剂对氟磺胺草醚在反枝苋上的吸收和药效的影响[J]. 农药学学报, 2006, 8(2): 162-166. doi: 10.3321/j.issn:1008-7303.2006.02.014

    LU X Y, XU J. Influence of two spray adjuvants on uptake and efficacy of fomesafen on red-root, Amaranthus retroflexus[J]. Chin J Pestic Sci, 2006, 8(2): 162-166. doi: 10.3321/j.issn:1008-7303.2006.02.014
    [90] 张忠亮, 李相全, 王欢, 等. 六种有机硅助剂对氟磺胺草醚的增效作用及其增效机理初探[J]. 农药学学报, 2015, 17(1): 115-118. doi: 10.3969/j.issn.1008-7303.2015.01.17

    ZHANG Z L, LI X Q, WANG H, et al. Preliminary studies on synergism and mechanisms of six organosilicon additives on fomesafen[J]. Chin J Pestic Sci, 2015, 17(1): 115-118. doi: 10.3969/j.issn.1008-7303.2015.01.17
    [91] 王金信, 张新, 肖斌. 不同粘度矿物油助剂对除草剂活性的影响[J]. 农药学学报, 2002, 4(1): 58-63. doi: 10.3321/j.issn:1008-7303.2002.01.010

    WANG J X, ZHANG X, XIAO B. Effects of different viscosity mechanical oil adjuvants on herbicides activity[J]. Chin J Pestic Sci, 2002, 4(1): 58-63. doi: 10.3321/j.issn:1008-7303.2002.01.010
    [92] CAO C, SONG Y Y, ZHOU Z L, et al. The role of adhesion force in the bouncing height of pesticide nanoparticles on the rice (Oryza sativa) leaf surface[J]. J Mol Liq, 2018, 272: 92-96. doi: 10.1016/j.molliq.2018.09.086
    [93] CAO C, ZHOU Z L, CAO L D, et al. Influence of the surface limiting elasticity modulus on the impact behavior of droplets of difenoconazole-loaded mesoporous silica nanoparticles with associated SDS[J]. Soft Matter, 2018, 14(29): 6070-6075. doi: 10.1039/C8SM01196F
    [94] LEI J M, GAO Y X, ZHAO X, et al. The dilational rheology and splashing behavior of ionic liquid-type imidazolium Gemini surfactant solutions: impact of alkyl chain length[J]. J Mol Liq, 2019, 283: 725-735. doi: 10.1016/j.molliq.2019.03.146
    [95] ZHENG L, CAO C, CAO L D, et al. Bounce behavior and regulation of pesticide solution droplets on rice leaf surfaces[J]. J Agric Food Chem, 2018, 66(44): 11560-11568. doi: 10.1021/acs.jafc.8b02619
  • 加载中
图(4)
计量
  • 文章访问数:  5088
  • HTML全文浏览量:  2011
  • PDF下载量:  255
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-05
  • 录用日期:  2019-09-08
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回