• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Inhibitory activity of aloesin and aloe gel against Curvularia lunata

Guohui ZHANG Rongyu LI Xiaomao WU Ming LI

张国辉, 李荣玉, 吴小毛, 李明. 芦荟苦素和芦荟凝胶对新月弯孢的抑菌活性[J]. 农药学学报, 2021, 23(2): 316-322. doi: 10.16801/j.issn.1008-7303.2021.0018
引用本文: 张国辉, 李荣玉, 吴小毛, 李明. 芦荟苦素和芦荟凝胶对新月弯孢的抑菌活性[J]. 农药学学报, 2021, 23(2): 316-322. doi: 10.16801/j.issn.1008-7303.2021.0018
Guohui ZHANG, Rongyu LI, Xiaomao WU, Ming LI. Inhibitory activity of aloesin and aloe gel against Curvularia lunata[J]. Chinese Journal of Pesticide Science, 2021, 23(2): 316-322. doi: 10.16801/j.issn.1008-7303.2021.0018
Citation: Guohui ZHANG, Rongyu LI, Xiaomao WU, Ming LI. Inhibitory activity of aloesin and aloe gel against Curvularia lunata[J]. Chinese Journal of Pesticide Science, 2021, 23(2): 316-322. doi: 10.16801/j.issn.1008-7303.2021.0018

芦荟苦素和芦荟凝胶对新月弯孢的抑菌活性

doi: 10.16801/j.issn.1008-7303.2021.0018
详细信息
  • 中图分类号: TQ458.2;S435.111

Inhibitory activity of aloesin and aloe gel against Curvularia lunata

Funds: This work was supported by National Key R & D Program of China (No. 2016YFD0200500), the national natural sci-ence foundation of China (No. 31701816, 31460480), agricultural research projects of the science and technology department of Guizhou province (No. [2019]3001), and the science and technique foundation of Guizhou province (No. [2017]1083)
More Information
    Author Bio:

    ZHANG Guohui, female, PhD student, E-mial: 59833259@qq.com

    WU Xiaomao ,male, professor, E-mail: XMWU827@126.com

    Corresponding author: LI Rongyu, author for correspondence, male, PhD, engaged in pesticide toxicology and resistance ,E-mail: lirongyu0328@126.comLI Ming, author for correspondence, male, professor, engaged in research on botanical pesticides and their toxicology, E-mail: lm21959@163.com
  • 摘要: 通过研究芦荟苦素和芦荟凝胶对新月弯孢Curvularia lunata的抑菌效果,以期寻找天然活性物质用于水稻新月弯孢叶斑病的防治。滤纸法显示:300 mg/mL的芦荟苦素处理28 h后对新月弯孢可产生明显的抑制带(3.37 mm);在孢子液(3 × 104 cfu/mL)平板上可产生直径为51.27 mm的抑菌圈,且抑制效应可达6 d。用1、2、4、8、16、32、64 mg/mL系列质量浓度的芦荟凝胶处理新月弯孢5 d时的菌丝抑制率范围为9.25% ~ 56.21%,抑菌率随芦荟凝胶质量浓度的增加而升高。此外,从处理后2 d到5 d,64 mg/mL芦荟凝胶的抑制率增加了21.87%。显微镜检表明,160 mg/mL芦荟苦素处理的C. lunata菌丝生长弱于对照,且无附着胞产生。经芦荟凝胶处理后,分生孢子芽管的生长速度显著低于对照,其生长抑制率可达75.39%-96.58%。本研究首次报道芦荟苦素能有效抑制C. lunata的菌丝生长和分生孢子萌发,而芦荟凝胶能有效抑制C. lunata的菌丝和芽管生长。
  • Figure  1.  Inhibition effect of 100, 200, and 300 mg/mL aloesin against C. lunata

    Inhibitory zone of aloesin against C. lunata at 24 h (a), 40 h (b) and 6 d (c), inhibitory zone of aloesin against C. lunata spores at 28 h (d).

    Figure  2.  Inhibition rate against mycelium growth of C. lunata at the test concentrations of aloe gel (2-5 d)

    Figure  3.  Inhibitory effect of aloesin against C. lunata germination

    (a) Control; (b) 200 mg/mL aloesin could cause C. lunat spores to break at one or both ends; (c) 200 mg/mL aloesin could cause C. lunata spores to rupture; (d) The unbroken end of C. lunata spores could germinate in the presence of 200 mg/mL aloesin (10 × 40; Bar = 10 µm).

    Figure  4.  Mycelial growth, appressorium development and spore germination of C. lunata with onion skin

    (a) Control. (b) Germination of C. lunata spores with onion skin (4 h). (c) Appressorium development of C. lunata with onion skin (3 d). (d) Appressorium development of C. lunata with onion skin (4 d). (e) Germination of C. lunata spores without appressorium in water (6 d). (f) A new round of C. lunata spores was produced in 6 d (10 × 40; bar = 20 µm).

    Figure  5.  Mycelial growth and appressorium development of aloesin against C. lunata with onion skin

    (a) C. lunata spores at 160 mg/mL aloesin at 1 d. (b) C. lunata spores at 160 mg/mL aloesin at 22 d. (c) Mycelial growth of C. lunata spores at 160 mg/mL aloesin was weak without appressorium (22 d). (d) Mycelial growth of C. lunata spores at 160 mg/mL aloesin was weak without appressorium based on aniline blue stain (22 d) (10 × 40, Bar = 20 µm).

    Figure  6.  Morphology of germinating C. lunata spores in control and aloe gel (6 h)

    (a) Germinating of C. lunata spores in control. (b) Germinating C. lunata spores in aloe gel. (Bar = 10 um)

  • [1] FAIVRE-RAMPANT O, GENIèS L, PIFFANELLI P, et al. Transmission of rice blast from seeds to adult plants in a non-systemic way[J]. Plant Pathol, 2013, 62: 879-887. doi: 10.1111/ppa.12003
    [2] LI R Y, WU X M, YIN X H, LONG Y H, et al. Naturally produced citral can significantly inhibit normal physiology and induce cytotoxicity on Magnaporthe grisea[J]. Pestic Biochem Physiol, 2015, 118: 19-25. doi: 10.1016/j.pestbp.2014.10.015
    [3] ABDULLAH A, ITO S, ADHANA K. Asian countries and the world towards 2050[C/OL]//Proceedings for Workshop and Conference on Rice in the World at Stake. 2006, 2: 28-43. https://www.mendeley.com/catalogue/f0d8928d-8060-3223-b25b-9375610be0e7/.
    [4] HOSSEYNI-MOGHADDAM M S, SOLTANI J. An investigation on the effects of photoperiod, aging and culture media onvegetative growth and sporulation of rice blast pathogen Pyricularia oryzae[J]. Progress in Biolog Sci, 2013, 3(2): 135-143.
    [5] SKAMNIOTI P, GURR S J. Against the grain: safeguarding rice from rice blast disease[J]. Trends Biotechnol, 2009, 27: 141-150. doi: 10.1016/j.tibtech.2008.12.002
    [6] GAO S, NI X, LI Y, et al. Sod gene of Curvularia lunata is associated with the virulence in maize leaf[J]. J Integr Agric, 2017, 16: 874-883. doi: 10.1016/S2095-3119(16)61513-7
    [7] LUZI-KIHUPI A, ZAKAYO J A, TUSEKELEGE H, et al. Mutation breeding for rice improvement in Tanzania[M/OL]. Food and Agriculture Organization, United Nations, Rome, 2009: 385-387. https://www.mendeley.com/catalogue/0e0ad0dc-a413-34bb-bbf5-bdba5a46e91b/.
    [8] AMADIOHA A C. Controlling rice blast in vitro and in vivo with extracts of Azadirachta indica[J]. Crop Prot, 2000, 19: 287-290. doi: 10.1016/S0261-2194(99)00080-0
    [9] UDA M N A, ADAM T, HASFALINA C M, et al. Reviewed immunosensor format using nanomaterial for tungro virus detection[J]. Adv Mat Res, 2014, 832: 410-414.
    [10] MOSSINI S A, DE OLIVEIRA K P, KEMMELMEIER C. Inhibition of patulin production by Penicillium expansum cultured with neem (Azadirachta indica) leaf extracts[J]. J Basic Microbiol, 2004, 44: 106-113. doi: 10.1002/jobm.200310332
    [11] GEETHA D, SIVAPRAKASAM K. Treating rice seeds with fungicides and antagonists to control seedborne diseases[J]. Inter Rice Res Notes, 1993, 18: 30-31.
    [12] MBODI Y, GAYE S, DIAW S. The role of tricyclazole in rice protection against blast and cultivar improvement[J]. Parasitica, 1987, 43: 41-47.
    [13] PETER A C. Nonpesticide methods for controlling diseases and insect pests[C]//PETER A C O. Report of the APO Seminar on Nonpesticide Methods for Controlling Diseases and Insect Pests held in Japan. Thailand: Asian Productivity Organization, 2005: 10–17.
    [14] BOWERS J H, LOCKE J C. Effect of botanical extracts on the population density of Fusarium oxysporum in soil and control of Fusarium wilt in the greenhouse[J]. Plant Dis, 2000, 84: 300-305. doi: 10.1094/PDIS.2000.84.3.300
    [15] ONYEKE C C, UGWUOKE K I. Effects of botanical extracts on the mycelial growth of seed-borne fungi of the African yam bean, Sphenostylis stenocarpa (Hochst ex a. Rich) harms[J]. Nigerian J Biotechnol, 2011, 22: 1-7.
    [16] WANG W, BEN-DANIEL B H, COHEN Y. Control of plant diseases by extracts of Inula viscosa[J]. Phytopathology, 2007, 94: 1042-1047.
    [17] LALITHA V, RAVEESHA K A, KIRAN B. Antimicrobial activity of Solanum torvum Swart against important seed borne pathogens of paddy[J]. Iranica J Energy Environ, 2010, 1(2): 160-164.
    [18] PRISANA W, NAKARIN S, SAISAMORN L, et al. Streptomyces angustmyceticus NR8-2 as a potential microorganism for the biological control of leaf spots of Brassica rapa subsp. pekinensis caused by Colletotrichum sp. and Curvularia lunata[J]. Biol Control, 2019, 138: 1-7.
    [19] GURJAR M S, ALI S, AKHTAR M, et al. Efficacy of plant extracts in plant disease management[J]. Agric Sci, 2012, 3: 425-433. doi: 10.4236/as.2012.33050
    [20] CAMPESTRINI L H, SILVEIRA J L M, DUARTE M E R, et al. NMR and rheological study of Aloe barbadensis partially acetylated glucomannan[J]. Carbohydrate Polymers, 2013, 94: 511-519. doi: 10.1016/j.carbpol.2013.01.020
    [21] PARK Y I, JOT H. Perspective of industrial application of Aloe vera[C]//PARK Y I, LEE S K. New Perspectives on Aloe. Boston: Springer, 2006: 191–200
    [22] LIN C W, WU C F, HSIAO N W, et al. Aloe-emodin is an interferon-inducing agent with antiviral activity against Japanese encephalitis virus and enterovirus 71[J]. Int J Antimicrob Agents, 2008, 32(4): 355-359. doi: 10.1016/j.ijantimicag.2008.04.018
    [23] BELE A A, KHALE A. Antimicrobial activity of Aloe vera formulation[J]. Asian Journal Pharmaceutical Technology & Innovation (AJPTI), 2016, 4(17): 1-6.
    [24] GHAZANFAR M U, HABIB A, SAHI S T. Screening of rice germplasm against Pyricularia oryzae the cause of rice blast disease[J]. Pak J Phytopathol, 2009, 21(1): 41-44.
    [25] UDA M N A, SHAARI N H, SAID N S, et al. Antimicrobial activity of plant extracts from Aloe vera, Citrus hystrix, Sabah snake grass and Zingiber officinale against Pyricularia oryzae that causes rice blast disease in paddy plants[J]. Mater Sci Eng, 2018, 318(1): 1-9. doi: 10.1088/1757-899X/318/1/012009
    [26] OGBEBOR N, ADEKUNLE A T. Inhibition of conidial germination and mycelial growth of Corynespora cassiicola (Berk and Curt) of rubber (Hevea brasiliensis Muell. Arg.) using extracts of some plants[J]. Afr J Biotechnol, 2005, 4: 996-1000.
    [27] MENDGEN K, HAHN M, DEISING H. Morphogenesis and mechanisms of penetration by plant pathogenic fungi[J]. Annu Rev Phytopathol, 1996, 34(34): 367-386.
    [28] LYNCH B, SIMON R, ROBERTS A. Subchronic toxicity evaluation of aloesin[J]. Regul Toxicol Pharm, 2011, 61: 161-171. doi: 10.1016/j.yrtph.2011.07.005
    [29] LAD V N, MURTHY Z V P. Rheology of Aloe barbadensis Miller: a naturally available material of high therapeutic and nutrient value for food applications[J]. J Food Eng, 2013, 115: 279-284. doi: 10.1016/j.jfoodeng.2012.10.036
    [30] SHAN B, CAI Y Z, BROOKS J D, et al. Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): activity against foodborne pathogenic bacteria[J]. J Agric Food Chem, 2007, 55: 5484-5490.
    [31] KA TO, H. Rice blast disease[J]. Pesticide Outlook, 2001, 12: 23-25. doi: 10.1039/b100803j
    [32] BAJPAI V K, KANG S C. In vitro and in vivo inhibition of plant pathogenic fungi by essential oil and extracts of Magnolia liliflora Desr[J]. J Agric Sci Tech-Iran, 2012, 14: 845-856.
    [33] ABED-ASHTIANI F, ARZANLOU M, NASEHI A, et al. Plant tonic, a plant-derived bioactive natural product, exhibits antifungal activity against rice blast disease[J]. Ind Crop Prod, 2018, 112: 105-112. doi: 10.1016/j.indcrop.2017.11.013
  • 加载中
图(6)
计量
  • 文章访问数:  363
  • HTML全文浏览量:  211
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-09
  • 录用日期:  2020-10-22
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回