• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

己唑醇及其对映体对人体乳腺癌细胞的选择毒性及氧化损伤研究

兰阳 孙大利 庞俊晓 孙晓红

兰阳, 孙大利, 庞俊晓, 孙晓红. 己唑醇及其对映体对人体乳腺癌细胞的选择毒性及氧化损伤研究[J]. 农药学学报, 2021, 23(2): 348-356. doi: 10.16801/j.issn.1008-7303.2021.0020
引用本文: 兰阳, 孙大利, 庞俊晓, 孙晓红. 己唑醇及其对映体对人体乳腺癌细胞的选择毒性及氧化损伤研究[J]. 农药学学报, 2021, 23(2): 348-356. doi: 10.16801/j.issn.1008-7303.2021.0020
Yang LAN, Dali SUN, Junxiao PANG, Xiaohong SUN. Study on the enantioselectivity cytotoxicity and oxidative damage of hexaconazole on MCF-7 cells[J]. Chinese Journal of Pesticide Science, 2021, 23(2): 348-356. doi: 10.16801/j.issn.1008-7303.2021.0020
Citation: Yang LAN, Dali SUN, Junxiao PANG, Xiaohong SUN. Study on the enantioselectivity cytotoxicity and oxidative damage of hexaconazole on MCF-7 cells[J]. Chinese Journal of Pesticide Science, 2021, 23(2): 348-356. doi: 10.16801/j.issn.1008-7303.2021.0020

己唑醇及其对映体对人体乳腺癌细胞的选择毒性及氧化损伤研究

doi: 10.16801/j.issn.1008-7303.2021.0020
基金项目: 贵州省科学技术厅项目(黔科合平台人才[2017]5718);贵州省教育厅青年科技人才成长项目(黔教合KY字[2018]203)
详细信息
    作者简介:

    兰阳,女,讲师,研究方向为营养与食品卫生学,E­maillanyang_1020@163.com

    通讯作者:

    孙晓红,通信作者 (Author for correspondence),女,教授,研究方向为营养与食品卫生学,E­mailsunxh2003@gmc.edu.cn

  • 中图分类号: S482.2;TQ450.26

Study on the enantioselectivity cytotoxicity and oxidative damage of hexaconazole on MCF-7 cells

  • 摘要: 在对映体水平上研究己唑醇对人体乳腺癌细胞 (MCF-7) 的选择毒性及氧化损伤。以MCF-7细胞作为受试对象,采用Cell Counting Kit-8 (CCK-8) 试剂盒测定经己唑醇对映体处理后的细胞毒性;采用氧化损伤相关试剂盒测定经己唑醇对映体处理后,细胞内乳酸脱氢酶 (lactate dehydrogenase, LDH) 释放量、活性氧 (reactive oxygen species, ROS) 产生量、超氧化物歧化酶 (superoxide dismutase, SOD) 和过氧化氢酶 (catalase, CAT) 的活性。结果表明:在10 ~ 160 mg/L范围内随着染毒质量浓度的增加,经过 (−)-、(+)- 和rac-己唑醇处理后的MCF-7细胞活性分别从85.24%、87.11%和103.87%降低至4.07%、5.11%和5.24%。其中,(−)-己唑醇对MCF-7细胞活性的抑制率最高,其次是 (+)- 和rac-己唑醇。氧化损伤检测结果显示,MCF-7细胞经20、40和80 mg/L的己唑醇对映体暴露后,细胞内LDH释放量和CAT酶活性随着己唑醇质量浓度的增加而逐渐增加,而ROS产生量和SOD酶活性则随着己唑醇质量浓度的增加呈现出先上升后下降的趋势。与细胞毒性结果相似,经3种形式的己唑醇处理后,(−)-己唑醇诱导的细胞氧化损伤程度最高,其次是 (+)- 和rac-己唑醇。本研究结果表明,己唑醇及其对映体在MCF-7细胞内的毒性和氧化损伤程度大小顺序为 (−)-己唑醇 > (+)-己唑醇 > rac-己唑醇。研究结果可为探明己唑醇的细胞毒性机制和开展食品安全风险评估提供依据。
  • 图  1  Rac-己唑醇对MCF-7细胞形态的影响

    A. 空白,B. 20 mg/L己唑醇,C. 40 mg/L己唑醇,D. 80 mg/L己唑醇 (× 40)。

    Figure  1.  Effects of Rac-hexaconazole on MCF-7 cells shape

    A. Blank group, B. 20 mg/L hexaconazole, C. 40 mg/L hexaconazole, D. 80 mg/L hexaconazole (× 40).

    图  2  (+)-己唑醇对MCF-7细胞形态的影响

    A. 空白,B. 20 mg/L己唑醇,C. 40 mg/L己唑醇,D. 80 mg/L己唑醇 (× 40)。

    Figure  2.  Effects of (+)-hexaconazole on MCF-7 cells shape

    A. Blank group, B. 20 mg/L hexaconazole, C. 40 mg/L hexaconazole, D. 80 mg/L hexaconazole (× 40).

    图  3  (-)-己唑醇对MCF-7细胞形态的影响

    A. 空白,B. 20 mg/L己唑醇,C. 40 mg/L己唑醇,D. 80 mg/L己唑醇 (× 40)。

    Figure  3.  Effects of (-)-hexaconazole on MCF-7 cells shape

    A. Blank group, B. 20 mg/L hexaconazole, C. 40 mg/L hexaconazole, D. 80 mg/L hexaconazole (× 40).

    图  4  己唑醇对映体及外消旋体对MCF-7细胞存活率的影响

    *代表与对照组相比存在显著性差异 (P < 0.05)。

    Figure  4.  Effects of hexaconazole enantiomers and racemes on LDH release from MCF-7 cells

    *Means significant difference compared with the control (P < 0.05).

    图  5  己唑醇对映体及外消旋体对MCF-7细胞LDH释放量的影响

    *代表与对照组相比存在显著性差异 (P < 0.05)。

    Figure  5.  Effects of hexaconazole enantiomers and racemes on LDH release from MCF-7 cells

    *Means significant difference compared with the control (P < 0.05).

    图  6  己唑醇对映体及外消旋体对MCF-7细胞内ROS产生量的影响

    *代表与对照组相比存在显著性差异 (P < 0.05)。

    Figure  6.  Effects of hexaconazole enantiomers and racemes on ROS generation in MCF-7 cells

    *Means significant difference compared with the control (P < 0.05).

    图  7  己唑醇对映体及外消旋体对MCF-7细胞内SOD酶活性的影响

    *代表与对照组相比存在显著性差异 (P < 0.05)。

    Figure  7.  Effects of hexaconazole enantiomers and racemes on SOD activity in MCF-7 cells

    *Means significant difference compared with the control (P < 0.05).

    图  8  己唑醇对映体及外消旋体对MCF-7细胞内CAT酶活性的影响

    *代表与对照组相比存在显著性差异 (P < 0.05)。

    Figure  8.  Effects of hexaconazole enantiomers and racemes on CAT activity in MCF-7 cells

    *Means significant difference compared with the control (P < 0.05).

    表  1  各处理组乳酸盐脱氢酶 (LDH) 活性测定反应体系

    Table  1.   The reaction system of LDH activity measurement in each treatment group (μL)

    试剂  
    Reagent  
    空白组
    Blank group
    标准组
    Standard group
    测定组
    Experiment group
    对照组
    Control group
    双蒸水 Double distilled water 25 5 5
    丙酮酸标准液 Pyruvic acid 20
    待测样本 Sample 20 20
    基质缓冲液 Buffer 25 25 25 25
    辅酶 I 应用液 Coenzyme I 5
    混合均匀,置于 37 ℃水浴锅中水浴 15 min。Mix and place in 37 ℃ with water bath for 15 min.
    2,4-二硝基苯肼 2,4-dinitrophenylhydrazine 25 25 25 25
    混合均匀,置于 37 ℃水浴锅中水浴 15 min。Mix and place in 37 ℃ with water bath for 15 min.
    0.4 mol/L NaOH 250 250 250 250
    下载: 导出CSV

    表  2  各处理组细胞内SOD活性测定反应体系

    Table  2.   The reaction system of SOD activity measurement in each treatment group (μL)

    试剂
    Reagent
    对照孔
    Control
    空白孔
    Blank
    测定孔
    Measured
    测定空白孔
    Measured blank
    待测样本 Sample 20 20
    蒸馏水 Distilled water 20 20
    酶工作液 Enzyme 20 20
    酶稀释液 Enzyme diluent 20 20
    底物应用液 Substrate 200 200 200 200
    混匀,37 ℃ 孵育 20 min,450 nm 处酶标仪读数。Mix, incubate at 37 ℃ for 20 min, and read at 450 nm.
    下载: 导出CSV

    表  3  各处理组细胞内过氧化氢酶 (CAT) 活性测定反应体系

    Table  3.   The reaction system of CAT activity measurement in each treatment group (mL)

    试剂
    Reagent
    对照组
    Control group
    测定组
    Measured group
    待测样本 Sample 0.05
    试剂一 (37 ℃ 预热) Reagent 1 (37 ℃ preheating) 1.0 1.0
    试剂二 (37 ℃ 预热) Reagent 2 (37 ℃ preheating) 0.1 0.1
    上述试剂混合均匀,置于37 ℃水浴锅中反应 1 min。The mixture was mixed and placed in a 37 ℃ water bath for 1 min.
    试剂三应用液 Reagent 3 1.0 1.0
    试剂四 Reagent 3 0.1 0.1
    双蒸水 Double distilled water 0.05
    下载: 导出CSV
  • [1] WANG Q X, QIU J, WANG P, et al. Stereoselective kinetic study of hexaconazole enantiomers in the rabbit[J]. Chirality, 2005, 17(4): 186-192. doi: 10.1002/chir.20152
    [2] WANG X Q, ZHANG H, XU H, et al. Enantioselective residue dissipation of hexaconazole in cucumber (Cucumis sativus L.), head cabbage (Brassica oleracea L. var. caulorapa DC.), and soils[J]. J Agric Food Chem, 2012, 60(9): 2212-2218. doi: 10.1021/jf204523t
    [3] ABASS K, REPONEN P, JALONEN J, et al. In vitro metabolism and interactions of the fungicide metalaxyl in human liver preparations[J]. Environ Toxicol Pharmacol, 2007, 23(1): 39-47. doi: 10.1016/j.etap.2006.06.004
    [4] WANG Q X, QIU J, ZHOU Z Q, et al. Stereoselective pharmacokinetics of diniconazole enantiomers in rabbits[J]. Chirality, 2009, 21(7): 699-703. doi: 10.1002/chir.20667
    [5] LEADER H, CASIDA J E. Resolution and biological activity of the chiral isomers of O-(4-bromo-2-chlorophenyl) O-ethyl S-propyl phosphorothioate (profenofos insecticide)[J]. J Agric Food Chem, 1982, 30(3): 546-551. doi: 10.1021/jf00111a034
    [6] 闫冬艳. 两种新型手性农药对HepG2细胞的对映体选择性毒性研究[D]. 呼和浩特: 内蒙古大学, 2018.

    YAN D Y. Enantioselective toxicity of two novel chiral pesticieds on HepG2 cells[D]. Huhehaote: Inner Mongolia University, 2018.
    [7] 杨桂玲, 陈晨, 王彦华, 等. 几种农药多元组合对HepG2人肝癌细胞的联合毒性效应[J]. 农药学学报, 2019, 21(4): 453-460.

    YANG G L, CHEN C, WANG Y H, et al. Combined toxic effect of pesticides mixtures in HepG2 cells[J]. Chin J Pestic Sci, 2019, 21(4): 453-460.
    [8] LI L, HU F, WANG C, et al. Enantioselective induction of oxidative stress by acetofenate in rat PC12 cells[J]. J Environ Sci, 2010, 22(12): 1980-1986. doi: 10.1016/S1001-0742(09)60349-1
    [9] WANG P, JIANG S R, QIU J, et al. Stereoselective degradation of ethofumesate in turfgrass and soil[J]. Pestic Biochem Physiol, 2005, 82(3): 197-204. doi: 10.1016/j.pestbp.2005.02.007
    [10] 李远播. 几种典型手性三唑类杀菌剂对映体的分析、环境行为及其生物毒性研究[D]. 北京: 中国农业科学院, 2013.

    LI Y B. Studies on the analysis, environmental behaviors, and toxicity of typical chiral triazole fungicide enantiomers[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013.
    [11] 梁宏武. 几种典型手性农药对映体的环境行为及水生生物毒性研究[D]. 北京: 中国农业大学, 2014.

    LIANG H W. Studies on stereoselective environments behaviors and aquatic toxicity of several chiral pesticides[D]. Beijing: China Agricultural University, 2014.
    [12] 喻亮. 三种三唑类杀菌剂对斑马鱼的内分泌干扰效应研究[D]. 杭州: 浙江大学, 2013.

    YU L. Endocrine disrupying effects three triazole fungicides on zebrafish[D]. Hangzhou: Zhejiang University, 2013.
    [13] DWIVEDI N, FLORA S J. Concomitant exposure to arsenic and organophosphates on tissue oxidative stress in rats[J]. Food and Chemical Toxicology: an International Journal Published for the British Industrial Biological Research Association, 2011, 49(5): 1152-1159. doi: 10.1016/j.fct.2011.02.007
    [14] SAQUIB Q, AL-KHEDHAIRY A A, SIDDIQUI M A, et al. Preferential binding of insecticide phorate with sub-domain IIA of human serum albumin induces protein damage and its toxicological significance[J]. Food Chem Toxicol, 2011, 49(8): 1787-1795. doi: 10.1016/j.fct.2011.04.028
    [15] SHARMA A, MISHRA M, SHUKLA A K, et al. Organochlorine pesticide, endosulfan induced cellular and organismal response in Drosophila melanogaster[J]. J Hazard Mater, 2012, 221-222: 275-287. doi: 10.1016/j.jhazmat.2012.04.045
    [16] ZAREI M, SHIVANANDAPPA T. Amelioration of cyclophosphamide-induced hepatotoxicity by the root extract of Decalepis hamiltonii in mice[J]. Food Chem Toxicol, 2013, 57: 179-184. doi: 10.1016/j.fct.2013.03.028
    [17] DEWEZ D, GEOFFROY L, VERNET G, et al. Determination of photosynthetic and enzymatic biomarkers sensitivity used to evaluate toxic effects of copper and fludioxonil in alga Scenedesmus obliquus[J]. Aquat Toxicol, 2005, 74(2): 150-159. doi: 10.1016/j.aquatox.2005.05.007
    [18] WEN Y Z, CHEN H, SHEN C S, et al. Enantioselectivity tuning of chiral herbicide dichlorprop by copper: roles of reactive oxygen species[J]. Environ Sci Technol, 2011, 45(11): 4778-4784. doi: 10.1021/es2003793
    [19] EINOR D, BONISOLI-ALQUATI A, COSTANTINI D, et al. Ionizing radiation, antioxidant response and oxidative damage: a meta-analysis[J]. Sci Total Environ, 2016, 548-549: 463-471. doi: 10.1016/j.scitotenv.2016.01.027
    [20] 孙大利. 柑橘中乙螨唑农药的代谢和毒性机理及其残留风险评价[D]. 重庆: 西南大学, 2017.

    SUN D L. Metabolic behavior and toxicity mechanism of etoxazole in Citrus fruits and its residual risk[D]. Chongqing: Southwest University, 2017.
    [21] SUN D, PANG J, ZHOU Z, et al. Enantioselective environmental behavior and cytotoxicity of chiral acaricide cyflumetofen[J]. Chemosphere, 2016, 161: 167-173. doi: 10.1016/j.chemosphere.2016.06.087
    [22] 王瑶. 三种三唑类手性农药在斑马鱼体内的生物富集行为和毒性效应研究[D]. 北京: 中国农业大学, 2017.

    WANG Y. Studies on bioaccumulation behavior and toxic effects of three chiral triazole fungicides in zebrafish[D]. Beijing: China Agricultural University, 2017.
    [23] VANDENBERG L N, COLBORN T, HAYES T B, et al. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses[J]. Endocr Rev, 2012, 33(3): 378-455. doi: 10.1210/er.2011-1050
    [24] ENQUIST M, ARAK A. Symmetry, beauty and evolution[J]. Nature, 1994, 372(6502): 169-172. doi: 10.1038/372169a0
    [25] YOON T P. Privileged chiral catalysts[J]. Science, 2003, 299(5613): 1691-1693. doi: 10.1126/science.1083622
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  439
  • HTML全文浏览量:  246
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-03
  • 录用日期:  2020-10-26
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回