• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

喷雾助剂对茎叶处理除草剂的增效机制及应用研究进展

李子璐 张晨辉 郭勇飞 卢忠利 高玉霞 杜凤沛

李子璐, 张晨辉, 郭勇飞, 卢忠利, 高玉霞, 杜凤沛. 喷雾助剂对茎叶处理除草剂的增效机制及应用研究进展[J]. 农药学学报, 2021, 23(2): 245-258. doi: 10.16801/j.issn.1008-7303.2021.0044
引用本文: 李子璐, 张晨辉, 郭勇飞, 卢忠利, 高玉霞, 杜凤沛. 喷雾助剂对茎叶处理除草剂的增效机制及应用研究进展[J]. 农药学学报, 2021, 23(2): 245-258. doi: 10.16801/j.issn.1008-7303.2021.0044
Zilu LI, Chenhui ZHANG, Yongfei GUO, Zhongli LU, Yuxia GAO, Fengpei DU. Research progress on the synergistic regularity and application of spray adjuvants on the foliage-applied herbicides[J]. Chinese Journal of Pesticide Science, 2021, 23(2): 245-258. doi: 10.16801/j.issn.1008-7303.2021.0044
Citation: Zilu LI, Chenhui ZHANG, Yongfei GUO, Zhongli LU, Yuxia GAO, Fengpei DU. Research progress on the synergistic regularity and application of spray adjuvants on the foliage-applied herbicides[J]. Chinese Journal of Pesticide Science, 2021, 23(2): 245-258. doi: 10.16801/j.issn.1008-7303.2021.0044

喷雾助剂对茎叶处理除草剂的增效机制及应用研究进展

doi: 10.16801/j.issn.1008-7303.2021.0044
基金项目: 国家重点研发计划 (2017YFD0200302);国家自然科学基金 (21802166,31972315)
详细信息
    作者简介:

    李子璐,女,博士研究生,E­mail:lizl@cau.edu.cn

    通讯作者:

    高玉霞,共同通信作者 (Co-author for correspondence),女,博士,实验师,主要从事新型纳米材料在农药减施增效方面的研究,E­mail:gaoyuxia@cau.edu.cn

    杜凤沛,通信作者 (Author for correspondence),男,博士,教授,主要从事农药减施增效及环境友好型制剂和助剂相关研究,E­mail:dufp@cau.edu.cn

  • 中图分类号: S482.92; TQ450.1; O647

Research progress on the synergistic regularity and application of spray adjuvants on the foliage-applied herbicides

  • 摘要: 农田草害的发生严重影响了农业生产和发展,使用除草剂进行化学防治是目前最省时省力和防除效果最好的除草方法。其中,茎叶处理除草剂因其具有不受土壤环境影响、按草施药、灵活和选择性高等优点,应用范围更广。然而,茎叶处理除草剂在喷雾施药过程中由于受到杂草叶片界面特性的影响,常出现药液迸溅、滚落、难以渗透等现象,导致除草剂用量增大,杂草产生抗性,并出现药害和环境残留等诸多问题。使用合适的喷雾助剂是解决以上问题的重要策略。考虑到除草剂的使用需要结合杂草性质,并与喷雾助剂一起使用,了解各自的作用方式对指导草害的防治具有重要意义。本文在介绍除草剂作用方式和应用现状的基础上,总结了禾本科、阔叶类和莎草科杂草的形态学和叶片界面特性及其对除草剂选择的影响,并详细阐述了常用喷雾助剂对茎叶处理除草剂的增效机制及其剂量传递过程的影响。在此基础上,分别归纳了喷雾助剂对触杀型和内吸传导型除草剂在防除禾本科、阔叶类、莎草科杂草方面的应用及增效规律。此外,文章还对除草剂喷雾助剂的未来发展方向进行了展望,以期为除草剂领域喷雾助剂的研发和使用提供参考,并最终实现农药的“减施增效”。
  • 图  1  几种常见的农田杂草

    禾本科杂草:稗草 (a)、牛筋草 (b)、狗尾草 (c); 阔叶类杂草:藜 (d)、马齿苋 (e) 和铁苋菜 (f);莎草科杂草:香附子 (g)、异型莎草 (h) 和碎米莎草 (i)。

    Figure  1.  Several common farmland weeds

    Gramineous weeds: Echinochloa crusgalli (L.) Beauv. (a), Eleusine indica (L.) Gaertn. (b), Setaria viridis (L.) Beauv. (c); Broadleaf weeds: Chenopodium album L. (d), Portulaca oleracea L. (e), Acalypha australis L. (f); Cyperaceous weeds: Cyperus rotundus L. (g), Cyperusdifformis L. (h), Cyperus iria L. (i).

    图  2  直径为500 μm的液滴在蜡质叶片 (a, b) 和绒毛叶片 (c, d) 上的润湿状态: 水滴 (a, c) 和添加甲酯化大豆油 (b, d)[39]

    Figure  2.  The wetting states of droplets around 500 μm on the waxy leaf surfaces (a, b) and hairy leaf surfaces (c, d) : water droplet (a, c) and droplets added with methyl soyate (b, d)[39]

    图  3  TX-100浓度逐渐增大的液滴在水稻叶表面的铺展机制示意图[44]

    (a) c < CMC, (b) CMC < c < CWC, (c) c > CWC.CMC: 临界胶束浓度;CWC: 临界润湿浓度。

    Figure  3.  Schematic representation of the TX-100 concentration controlled spreading behavior on rice leaves[44]

    CMC: critical micelle concentration; CWC: critical wetting concentration.

    图  4  四种常用除草剂喷雾助剂的主要增效机制示意图

    Figure  4.  Scheme of the main synergistic mechanism of four common herbicide spray adjuvants

    图  5  不同样品处理后稗草叶片表面的表皮细胞 (a1-e1) 和表皮蜡质层 (a2-e2) 电镜图[21]

    (a1, a2) 水空白组;(b1, b2) 氰氟草酯处理组;(c1, c2) 氰氟草酯 + 0.3%甲酯化植物油;(d1, d2) 氰氟草酯 + 0.3%石蜡油;(e1, e2) 氰氟草酯 + 0.3%矿物油。

    Figure  5.  Scanning electron microscopy images of the epidermal cells (a1-e1) and wax layer (a2-e2) of the barnyard grass leaves treated by different samples[21]

    (a1, a2) blank control;(b1, b2) cyhalofop-butyl;(c1, c2) cyhalofop-butyl + 0.3% methylated seed oil; (d1, d2) cyhalofop-butyl + 0.3% paraffin oil;(e1, e2) cyhalofop-butyl + 0.3% mineral oil.

    图  6  藜 (a, CHEAL)、马齿苋 (b, POROL) 和苘麻 (c, ABUTH) 叶片的扫描电镜图; (d) 3种杂草的叶表面蜡质层含量;(e) 添加助剂后的氟嘧磺隆在3种杂草叶表面的铺展面积[68]

    Figure  6.  Scanning electron microscopy images of three weeds: (a) lambsquarters (CHEAL), (b) common purslane (POROL) and (c) velvetleaf (ABUTH); (d) Wax content (per unit of leaf area) for three weeds; (e) Spread area of droplets with adjuvant additives on weed leaf surface[68]

    表  1  五大作物田中用量最大的前10种除草剂 (数据统计来自2017年AMIS®AgriGlobe®)

    Table  1.   The top ten herbicides in five crop fields (Data from AMIS®AgriGlobe® in 2017)

    作物
    Crop
    茎叶处理除草剂
    Foliage-applied herbicides
    土壤处理除草剂
    Soil-treated herbicides
    触杀型除草剂
    Contact herbicides
    内吸传导型除草剂
    Translocated herbicides
    水稻
    Rice
    灭草松、乙氧氟草醚
    bentazone, oxyfluorfen
    五氟磺草胺、氰氟草酯、苄嘧磺隆、丁草胺、双草醚、草甘膦、二氯喹啉酸
    penoxsulam, cyhalofop-butyl, bensulfuron, butachlor, bispyribac-sodium, glyphosate, quinclorac
    丙草胺
    pretilachlor
    小麦
    Wheat
    百草枯
    paraquat
    苯磺隆、精噁唑禾草灵、2, 4-D、唑草酮、氟草烟、甲基二磺隆、2甲4氯、草甘膦、甲磺隆
    tribenuron, fenoxaprop-p-ethyl, 2, 4-D, carfentrazone, fluroxypyr, mesosulfuron, MCPA, glyphosate, metsulfuron
    玉米
    Maize
    百草枯、敌草快
    paraquat, diquat
    烟嘧磺隆、莠去津、硝磺草酮、2,4-D、草甘膦、噻酮磺隆、异丙甲草胺
    nicosulfuron, atriazine, mesotrione, 2, 4-D, glyphosate, thiencarbazone-methyl, metolachlor
    乙草胺
    acetochlor
    大豆
    Soybean
    氟磺胺草醚、灭草松
    fomesafen, bentazone
    精喹禾灵、烯草酮、2,4-D、高效氟吡草禾灵、草甘膦、异噁草酮、精吡氟禾草灵
    quizalofop, clethodim, 2, 4-D, haloxyfop-p, glyphosate, clomazone, fluazifop-p-butyl
    乙草胺
    acetochlor
    棉花
    Cotton
    百草枯
    paraquat
    草甘膦、精异丙甲草胺、敌草隆、高效氟吡草禾灵、精喹禾灵
    glyphosate, S-metolachlor, diuron, haloxyfop-p, quizalofop
    二甲戊乐灵、氟乐灵、乙草胺、甲草胺
    pendimethalin, trifluralin, acetochlor, alachlor
    下载: 导出CSV

    表  2  四种常见的除草剂喷雾助剂

    Table  2.   Four commonly used herbicide spray adjuvants

    喷雾助剂种类
    Spray adjuvants species
    常用除草剂喷雾助剂举例
    Examples of commonly used herbicide spray adjuvants
    参考文献
    References
    油类助剂
    Oil adjuvants
    矿物油:石蜡油、柴油、煤油、石油、机油等
    Mineral oils: paraffin oil, diesel, kerosene, petroleum, engine oil, etc.
    [20-21]
    植物油:油菜籽油、大豆油、棉籽油、橄榄油、芝麻油、蓖麻油、花生油等
    Vegetable oils: rapeseed oil, soybean oil, cotton oil, olive oil, sesame oil, castor oil, peanut oil, etc.
    [22]
    植物油衍生物:甲酯化菜籽油、甲酯化向日葵油、酯化聚氧乙烯甘油、甲基化聚氧乙烯脂肪酸等
    Vegetable oil derivatives: methylated seed oil, methylated sunflower oil, esterified poly-oxyethylene glycerol, methylated poly-oxyethylene fatty acid, etc.
    [8, 23]
    商用助剂:速捷 (戴商高士公司)、TEHP (先正达唑啉草酯商用助剂)、GY-Hmax (先正达硝磺草酮 • 莠去津商用助剂)、Scoil (甲酯化植物油) 等
    Commercial adjuvants: Sujie (De Sangosse Company), TEHP (commercial adjuvant of pinexaden, Syngenta AG), GY-Hmax (Commercial adjuvant of mesotrione and atrazine, Syngenta AG), Scoil (methylated seed oil), etc.
    [21-22, 24-25]
    表面活性剂
    Surfactants
    非离子表面活性剂:Tween 80、Tween 20、烷醇聚氧乙烯醚、烷基芳基聚乙二醇等
    Nonionic surfactants: Tween 80, Tween 20, fatty alcohol poly-oxyethylene ether, alkyl aryl polyglycol ether, etc.
    [24, 26]
    阴离子表面活性剂:十二烷基苯磺酸钠 (ABS)、脂肪醇聚氧乙烯醚硫酸钠 (AES)、柠檬酸烷基醚酯 (AEC) 等
    Anionic surfactants: sodium dodecyl benzene sulfonate (ABS), sodium lauryl ether sulfate (AES), citric acid alkyl ether eater (AEC), etc.
    [27-29]
    阳离子表面活性剂:乙氧基长链脂肪胺等
    Cationic surfactants: ethoxylated long-chain fatty amine, etc.
    [27]
    商用助剂:激健 (蜀峰作物科学有限公司)、伴宝 (拜耳作物科学有限公司) 等
    Commercial adjuvants: Jijian (Shufeng Crop Science Co. LTD), Banbao (Bayer Crop Science Co. LTD), etc.
    [30]
    有机硅助剂:施倍丰 (诺农国际生物技术有限公司)、Silwet L-77 (Monsanto Company NZ)、Freeway (Nufarm, NZ & Australia)、Boost (DowElanco, NZ) 等
    Organosilicone adjuvants: Shibeifeng (Nonon International Biotechnology Co. LTD), Silwet L-77 (Monsanto Company NZ), Freeway (Nufarm, NZ & Australia), Boost (DowElanco, NZ), etc.
    [31-32]
    无机盐类助剂
    Inorganic salt adjuvants
    硫酸铵 (AMS)、尿素硝铵混合物 (UAN)、硫代硫酸铵 (ATS)、硝酸铵、碳酸氢铵、碳酸氢钾、碳酸氢钠、硫酸钾等
    Ammonium sulfate (AMS), urea ammonium nitrate mixture (UAN), ammonium thiosulfate (ATS), ammonium nitrate, ammonium bicarbonate, potassium bicarbonate, sodium bicarbonate, potassium sulfate, etc.
    [25, 33]
    高分子类助剂
    Polymer adjuvants
    聚氧乙烯 (PEO)、聚乙烯醇 (PVA)、聚丙烯酸 (PAA)、聚丙烯酰胺 (PAM) 等
    Poly-oxyethylene (PEO), poly-vinyl alcohol (PVA), poly-acrylic acid (PAA), poly-acrylamide (PAM), etc.
    [34-35]
    下载: 导出CSV
  • [1] 强胜, 陈世国. 生物除草剂研发现状及其面临的机遇与挑战[J]. 杂草科学, 2011, 29(1): 1-6.

    QIANG S, CHEN S G. Current status of bioherbicide research and development and its opportunities and challenges[J]. Weed Sci, 2011, 29(1): 1-6.
    [2] OERKE E C. Crop losses to pests[J]. J Agric Sci, 2006, 144(1): 31-43.
    [3] DAYAN F E. Current status and future prospects in herbicide discovery[J]. Plants-Basel, 2019, 8(9): 341.
    [4] MACLAREN C, STORKEY J, MENEGAT A, et al. An ecological future for weed science to sustain crop production and the environment. a review[J]. Agron Sustain Dev, 2020, 40(4): 24.
    [5] YU Q, POWLES S. Metabolism-based herbicide resistance and cross-resistance in crop weeds: a threat to herbicide sustainability and global crop production[J]. Plant Physiol, 2014, 166(3): 1106-1118.
    [6] 冷阳. 中国农药制剂技术发展方向试析[J]. 世界农药, 2017, 39(1): 1-8.

    LENG Y. Development trend of pesticide formulation technology in China[J]. World Pestic, 2017, 39(1): 1-8.
    [7] PENNER D. Activator adjuvants[J]. Weed Technol, 2000, 14(4): 785-791.
    [8] OECD. The global portal to information on chemical substances, CAS: 1009-22-9 [DB/OL]. (2018-11-05) [2021-03-22]. https://echa.europa.eu/registration-dossier/-/registered-dossier/11551.
    [9] 王成菊, 张文吉. 助剂在除草剂应用中的作用及发展前景[J]. 农药学学报, 2003, 5(1): 12-20. doi: 10.3321/j.issn:1008-7303.2003.01.002

    WANG C J, ZHANG W J. A review and prospect on herbicide adjuvants[J]. Chin J Pestic Sci, 2003, 5(1): 12-20. doi: 10.3321/j.issn:1008-7303.2003.01.002
    [10] WANG C J, LIU Z Q. Foliar uptake of pesticides-Present status and future challenge[J]. Pestic Biochem Phys, 2007, 87(1): 1-8.
    [11] GIANESSI L P. The increasing importance of herbicides in worldwide crop production[J]. Pest Manag Sci, 2013, 69(10): 1099-1105.
    [12] KIRKWOOD R C. Recent developments in our understanding of the plant cuticle as a barrier to the foliar uptake of pesticides[J]. Pestic Sci, 1999, 55(1): 69-77.
    [13] ANDERSON W P. Weed science: principles[M]. 2nd. West Publishing Company, 1983: 65-71.
    [14] Commission of the European Communities. Commission decision 2002/657/EC implementing council directive 96/23/EC, concerning the performance of analytical methods and the interpretation of results [S]. 2002, L221: 8-36.
    [15] Commission of the European Communities. Commission regulation 2006/401/EC, laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs [S]. 2006, L70:12-34.
    [16] 强胜. 杂草学[M]. 2版. 北京: 中国农业出版社, 2009: 175-206.

    QIANG S. Weed science[M]. Beijing: China Agriculture Press, 2009: 175-206.
    [17] GAO Y, GUO R F, FAN R J, et al. Wettability of pea leaves from three regions characterized at different stages after flowering using the OWRK method[J]. Pest Manag Sci, 2018, 74(8): 1804-1809.
    [18] GRICHAR W J, SESTAK D C. Effect of adjuvants on control of nutsedge (Cyperus esculentus and C. rotundus) by imazapic and imazethapyr[J]. Crop Prot, 2000, 19(7): 461-465.
    [19] KIRKWOOD R C. Use and mode of action of adjuvants for herbicides: a review of some current work[J]. Pestic Sci, 1993, 38(2-3): 93-102.
    [20] 王金信, 张新, 肖斌. 不同粘度矿物油助剂对除草剂活性的影响[J]. 农药学学报, 2002(1): 58-63. doi: 10.3321/j.issn:1008-7303.2002.01.010

    WANG J X, ZHANG X, XIAO B. Effects of different viscosity mechanical oil adjuvants on herbicides activity[J]. Chin J Pestic Sci, 2002(1): 58-63. doi: 10.3321/j.issn:1008-7303.2002.01.010
    [21] LI J, CHEN W T, XU Y, et al. Comparative effects of different types of tank-mixed adjuvants on the efficacy, absorption and translocation of cyhalofop-butyl in barnyardgrass (Echinochloa crus-galli [L.] Beauv.)[J]. Weed Biol Manag, 2016, 16(2): 80-89.
    [22] IZADI-DARBANDI E, ALIVERDI A, HAMMAMI H. Behavior of vegetable oils in relation to their influence on herbicides’ effectiveness[J]. Ind Crop Prod, 2013, 44: 712-717.
    [23] ZHANG J W, JAECK O, MENEGAT A, et al. The mechanism of methylated seed oil on enhancing biological efficacy of topramezone on weeds[J]. Plos One, 2013, 8(9): e74280.
    [24] ARAND K, ASMUS E, POPP C, et al. The mode of action of adjuvants-Relevance of physicochemical properties for effects on the foliar application, cuticular permeability, and greenhouse performance of pinoxaden[J]. J Agric Food Chem, 2018, 66(23): 5770-5777.
    [25] 龙建平, 安伟良, 李忠华, 等. 无机盐助剂对烟嘧磺隆的增效作用[J]. 农药, 2005, 44(5): 226-227. doi: 10.3969/j.issn.1006-0413.2005.05.013

    LONG J P, AHRENS W H, LI Z H, et al. Enhancement of nicosulfuron efficacy with inorganic salt adjuvants[J]. Agrochemicals, 2005, 44(5): 226-227. doi: 10.3969/j.issn.1006-0413.2005.05.013
    [26] SOBIECH L, GRZANKA M, SKRZYPCZAK G, et al. Effect of adjuvants and pH adjuster on the efficacy of sulcotrione herbicide[J]. Agronomy-Basel, 2020, 10(4): 530.
    [27] 卢向阳, 徐筠. 两种喷雾助剂对氟磺胺草醚在反枝苋上的吸收和药效的影响[J]. 农药学学报, 2006, 8(2): 162-166. doi: 10.3321/j.issn:1008-7303.2006.02.014

    LU X Y, XU J. Influence of two spray adjuvants on uptake and efficacy of fomesafen on red-root (Amaranthus retroflexus)[J]. Chin J Pestic Sci, 2006, 8(2): 162-166. doi: 10.3321/j.issn:1008-7303.2006.02.014
    [28] 孔令鸟, 刘迎, 夏雄燕, 等. AES在草铵膦水剂中的应用研究[J]. 现代农药, 2011, 10(4): 32-34. doi: 10.3969/j.issn.1671-5284.2011.04.008

    KONG L N, LIU Y, XIA X Y, et al. Application of AES in the glufosinate AS[J]. Mod Agrochem, 2011, 10(4): 32-34. doi: 10.3969/j.issn.1671-5284.2011.04.008
    [29] JOHNSON H E, HAZEN J L, PENNER D. Citric ester surfactants as adjuvants with herbicides[J]. Weed Technol, 2002, 16(4): 867-872.
    [30] ABOUZIENA H F H, SHARMA S D, SINGH M. Impact of adjuvants on bentazon efficacy on selected broadleaf weeds[J]. Crop Prot, 2009, 28(12): 1081-1085.
    [31] 张忠亮, 李相全, 王欢, 等. 六种有机硅助剂对氟磺胺草醚的增效作用及其增效机理初探[J]. 农药学学报, 2015, 17(1): 115-118. doi: 10.3969/j.issn.1008-7303.2015.01.17

    ZHANG Z L, LI X Q, WANG H, et al. Preliminary studies on synergism and mechanisms of six organosilicon additives on fomesafen[J]. Chin J Pestic Sci, 2015, 17(1): 115-118. doi: 10.3969/j.issn.1008-7303.2015.01.17
    [32] 武菊英, DASTGHEIB F. 几种有机硅助剂对草甘膦在单子叶植物体内吸收、转移和分布的影响[J]. 农药学学报, 2001, 3(1): 51-56. doi: 10.3321/j.issn:1008-7303.2001.01.010

    WU J Y, DASTGHEIB F. Influence of organosilicone surfactants on uptake, translocation and distribution of glyphosate on perennial ryegrass (Lolium perenne L.)[J]. Chin J Pestic Sci, 2001, 3(1): 51-56. doi: 10.3321/j.issn:1008-7303.2001.01.010
    [33] FELIX J, DAUER J T, HULTING A G, et al. Yellow nutsedge (Cyperus esculentus) growth and tuber production in response to increasing glyphosate rates and selected adjuvants[J]. Weed Technol, 2012, 26(1): 95-101.
    [34] BARTOLO D, BOUDAOUD A, NARCY G, et al. Dynamics of non-newtonian droplets[J]. Phys Rev Lett, 2007, 99(17): 174502.
    [35] SONG M R, HU D, ZHENG X F, et al. Enhancing droplet deposition on wired and curved superhydrophobic leaves[J]. ACS Nano, 2019, 13(7): 7966-7974.
    [36] GAUVRIT C, CABANNE F. Oils for weed control: uses and mode of action[J]. Pestic Sci, 1993, 37(2): 147-153.
    [37] MENG G Y, ZHOU J, JIN C Z. Research progress on plant source herbicide adjuvants[J]. Agric Sci Technol, 2016, 17(11): 2619-2621, 2626.
    [38] 安国栋, 耿鹏, 胡美英, 等. 植物油助剂在农药领域中的研究进展[J]. 农药, 2012, 51(8): 558-561, 586. doi: 10.3969/j.issn.1006-0413.2012.08.004

    AN G D, GENG P, HU M Y, et al. Research advance in plant oil as pesticide adjuvant[J]. Agrochemicals, 2012, 51(8): 558-561, 586. doi: 10.3969/j.issn.1006-0413.2012.08.004
    [39] XU L Y, ZHU H P, OZKAN H E, et al. Droplet evaporation and spread on waxy and hairy leaves associated with type and concentration of adjuvants[J]. Pest Manag Sci, 2011, 67(7): 842-851.
    [40] 华乃震. 油类助剂及油类在农药中的应用和前景(Ⅰ)[J]. 农药, 2013, 52(1): 7-10.

    HUA N Z. Application and prospect of oils adjuvant and oils in pesticide (Ⅰ)[J]. Agrochemicals, 2013, 52(1): 7-10.
    [41] BUCHHOLZ A. Characterization of the diffusion of non-electrolytes across plant cuticles: properties of the lipophilic pathway[J]. J Exp Bot, 2006, 57(11): 2501-2513.
    [42] ARAND K, STOCK D, BURGHARDT M, et al. pH-dependent permeation of amino acids through isolated ivy cuticles is affected by cuticular water sorption and hydration shell size of the solute[J]. J Exp Bot, 2010, 61(14): 3865-5873.
    [43] SONG M R, JU J, LUO S Q, et al. Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant[J]. Sci Adv, 2017, 3(3): e1602188.
    [44] ZHU Y Q, GAO Y X, ZHANG C H, et al. Static and dynamic wetting behavior of TX-100 solution on super-hydrophobic rice (Oryza sativa) leaf surfaces[J]. Colloid Surf A: Physicochem Eng Asp, 2018, 547: 148-156.
    [45] ZHANG C H, ZHAO X, LEI J M, et al. The wetting behavior of aqueous surfactant solutions on wheat (Triticum aestivum) leaf surfaces[J]. Soft Matter, 2017, 13(2): 503-513.
    [46] 张晨辉, 马悦, 杜凤沛. 表面活性剂调控农药药液对靶润湿沉积研究进展[J]. 农药学学报, 2019, 21(5-6): 883-894.

    ZHANG C H, MA Y, DU F P. Research progress on the wetting and deposition behaviors of pesticide droplet on target surfaces with the addition of surfactants[J]. Chin J Pestic Sci, 2019, 21(5-6): 883-894.
    [47] 范仁俊, 张晓曦, 周璐, 等. 利用OWRK法预测桃叶表面润湿性能的研究[J]. 农药学学报, 2011, 13(1): 79-83. doi: 10.3969/j.issn.1008-7303.2011.01.13

    FAN R J, ZHANG X X, ZHOU L, et al. Research on the wettability of peach leaf surfaces by OWRK method[J]. Chin J Pestic Sci, 2011, 13(1): 79-83. doi: 10.3969/j.issn.1008-7303.2011.01.13
    [48] BAUR P, GRAYSON B T, SCHONHERR J. Polydisperse ethoxylated fatty alcohol surfactants as accelerators of cuticular penetration. 1. Effects of ethoxy chain length and the size of the penetrants[J]. Pestic Sci, 1997, 51(2): 131-152.
    [49] STEVENS P J G, KIMBERLEY M O, MURPHY D S, et al. Adhesion of spray droplets to foliage: the role of dynamic surface tension and advantages of organosilicone surfactants[J]. Pestic Sci, 1993, 38(2-3): 237-245.
    [50] TANG X L, DONG J F, LI X F. A comparison of spreading behaviors of silwet L-77 on dry and wet lotus leaves[J]. J Colloid Interface Sci, 2008, 325(1): 223-227.
    [51] TRAVLOS I, CHEIMONA N, BILALIS D, et al. Glyphosate efficacy of different salt formulations and adjuvant additives on various weeds[J]. Agronomy-Basel, 2017, 7(3): 60.
    [52] DEVKOTA P, JOHNSON W G. Glufosinate efficacy as influenced by carrier water pH, hardness, foliar fertilizer, and ammonium sulfate[J]. Weed Technol, 2016, 30(4): 848-859.
    [53] MA Y, HAO J, ZHAO K F, et al. Biobased polymeric surfactant: natural glycyrrhizic acid-appended homopolymer with multiple pH-responsiveness[J]. J Colloid Interface Sci, 2019, 541: 93-100.
    [54] ELSABEE M Z, MORSI R E, AL-SABAGH A M. Surface active properties of chitosan and its derivatives[J]. Colloid Surf B-Biointerfaces, 2009, 74(1): 1-16.
    [55] BERGERON V, BONN D, MARTIN J Y, et al. Controlling droplet deposition with polymer additives[J]. Nature, 2000, 405(6788): 772-775.
    [56] KESHAVARZ B, SHARMA V, HOUZE E C, et al. Studying the effects of elongational properties on atomization of weakly viscoelastic solutions using Rayleigh Ohnesorge Jetting Extensional Rheometry (ROJER)[J]. J Non-Newton Fluid Mech, 2015, 222: 171-189.
    [57] SMITH M I, SHARP J S. Origin of contact line forces during the retraction of dilute polymer solution drops[J]. Langmuir, 2014, 30(19): 5455-5459.
    [58] DAMAK M, MAHMOUDI S R, HYDER M N, et al. Enhancing droplet deposition through in-situ precipitation[J]. Nat Commun, 2016, 7: 12560.
    [59] SYMONDS B L, LINDSAY C I, THOMSON N R, et al. Chitosan as a rainfastness adjuvant for agrochemicals[J]. RSC Adv, 2016, 6(104): 102206-102213.
    [60] SYMONDS B L, THOMSON N R, LINDSAY C I, et al. Rainfastness of poly(vinyl alcohol) deposits on Vicia faba leaf surfaces: from laboratory-scale washing to simulated rain[J]. ACS Appl Mater Interfaces, 2016, 8(22): 14220-14230.
    [61] 吴志凤, 刘贤进. 我国农药助剂工业发展与管理概况[J]. 农药科学与管理, 2014, 35(12): 23-26. doi: 10.3969/j.issn.1002-5480.2014.12.005

    WU Z F, LIU X J. Status on development and management of pesticide adjuvants in China[J]. Pestic Sci Admin, 2014, 35(12): 23-26. doi: 10.3969/j.issn.1002-5480.2014.12.005
    [62] BAUR P, SCHONHERR J, GRAYSON B T. Polydisperse ethoxylated fatty alcohol surfactants as accelerators of cuticular penetration. 2. Separation of effects on driving force and mobility and reversibility of surfactant action[J]. Pestic Sci, 1999, 55(8): 831-842.
    [63] BUNTING J A, SPRAGUE C L, RIECHERS D E. Absorption and activity of foramsulfuron in giant foxtail (Setaria faberi) and woolly cupgrass (Eriochloa villosa) with various adjuvants[J]. Weed Sci, 2004, 52(4): 513-517.
    [64] NALEWAJA J D, WOZNICA Z, MATYSIAK, R. 2, 4-D amine antagonism by salts[J]. Weed Technol, 1991, 5(4): 873-880.
    [65] HUTCHINSON P J S, EBERLEIN C V, TONKS D J. Broadleaf weed control and potato crop safety with postemergence rimsulfuron, metribuzin and adjuvant combinations[J]. Weed Technol, 2004, 18(3): 750-756.
    [66] KNEZEVIC S Z, DATTA A, SCOTT J, et al. Adjuvants influenced saflufenacil efficacy on fall-emerging weeds[J]. Weed Technol, 2009, 23(3): 340-345.
    [67] LIU Z Q. Effects of surfactants on foliar uptake of herbicides-a complex scenario[J]. Colloid Surf B-Biointerfaces, 2004, 35(3-4): 149-153.
    [68] SANYAL D, BHOWMIK P C, REDDY K N. Leaf characteristics and surfactants affect primisulfuron droplet spread in three broadleaf weeds[J]. Weed Sci, 2006, 54(1): 16-22.
    [69] DEVKOTA P, SPAUNHORST D J, JOHNSON W G. Influence of carrier water pH, hardness, foliar fertilizer, and ammonium sulfate on mesotrione efficacy[J]. Weed Technol, 2016, 30(3): 617-628.
    [70] NELSON K A, RENNER K A, PENNER D. Yellow nutsedge (Cyperus esculentus) control and tuber yield with glyphosate and glufosinate[J]. Weed Technol, 2002, 16(2): 360-365.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  529
  • HTML全文浏览量:  305
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-24
  • 录用日期:  2020-11-29
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回