• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

几丁质酶抑制剂及噻唑烷酮类化合物合成与农用活性研究进展

张婧瑜 韩清 蒋志洋 李慧琳 邓鸣飞 朱凯 李明君 段红霞

张婧瑜, 韩清, 蒋志洋, 李慧琳, 邓鸣飞, 朱凯, 李明君, 段红霞. 几丁质酶抑制剂及噻唑烷酮类化合物合成与农用活性研究进展[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2021.0049
引用本文: 张婧瑜, 韩清, 蒋志洋, 李慧琳, 邓鸣飞, 朱凯, 李明君, 段红霞. 几丁质酶抑制剂及噻唑烷酮类化合物合成与农用活性研究进展[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2021.0049
Jingyu ZHANG, Qing HAN, Zhiyang JIANG, Huilin LI, Mingfei DENG, Kai ZHU, Mingjun LI, Hongxia DUAN. Chitinase inhibitors and synthesis and agricultural bioactivity of thiazolidinones: a review[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2021.0049
Citation: Jingyu ZHANG, Qing HAN, Zhiyang JIANG, Huilin LI, Mingfei DENG, Kai ZHU, Mingjun LI, Hongxia DUAN. Chitinase inhibitors and synthesis and agricultural bioactivity of thiazolidinones: a review[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2021.0049

几丁质酶抑制剂及噻唑烷酮类化合物合成与农用活性研究进展

doi: 10.16801/j.issn.1008-7303.2021.0049
基金项目: 国家重点研发计划项目 (2017YFD0200504);中国农业大学URP项目 (urp20201101058)
详细信息
    作者简介:

    张婧瑜,女,本科生,E-mail:2018310060312@cau.edu.cn

    通讯作者:

    段红霞,通信作者 (Author for correspondence),女,博士,副教授,研究方向为靶标导向新农药分子设计与创制,E-mail:hxduan@cau.edu.cn

  • 中图分类号: S481; TQ450.1; O626.25

Chitinase inhibitors and synthesis and agricultural bioactivity of thiazolidinones: a review

  • 摘要: 几丁质酶 (EC 3.2.1.14) 可催化几丁质降解生成几丁寡糖,在几丁质代谢通路中发挥着重要作用,在昆虫、真菌和线虫等有害生物的生长发育过程中不可或缺。以几丁质酶为潜在靶标,有望开发出具有全新作用机制的新型农药品种。近年来,由于噻唑烷酮类化合物被报道具有包括几丁质酶抑制活性的多种农用生物活性,其合成方法受到广泛关注。本文以亚洲玉米螟几丁质酶 (OfCht) 为代表,对几丁质酶结构特点,典型糖类、肽类、虚拟筛选和天然产物源酶抑制剂,以及几丁质酶与抑制剂的结合方式进行了概要性综述,着重针对噻唑烷-4-酮、2-硫代噻唑烷-4-酮和噻唑-2,4-二酮3种噻唑烷酮类化合物的合成方法和农用生物活性研究进行了归纳总结,进而对噻唑烷酮类化合物在几丁质酶抑制活性方面的应用进行展望,以期为基于昆虫几丁质酶独特结构特点进行合理设计和发现新型噻唑烷酮类几丁质酶抑制剂用于未来农业害虫防治提供参考。
  • 图  1  不同亚洲玉米螟的几丁质酶-配体复合物晶体结构

    几丁质酶表面 (白色)、配体 (蓝色)、与配体产生结合作用的关键氨基酸残基 (粉色)[7, 10-12]

    Figure  1.  Crystal structures of different O. furnacalis chitinases in complex with different ligand

    Molecular surfaces of chitinase are shown in white. Ligands are shown in blue stick mode, and the key amino acid residues involved in the molecular interaction of different ligands are shown in pink stick mode[7, 10-12].

    1  几丁质和糖类几丁质酶抑制剂

    1.  Chitin and carbohydrate chitinase inhibitors

    图  2  OfCht-阿洛氨菌素复合体 (PDB 6JMB) 结构

    OfChtⅣ表面 (白色)、allosamidin (蓝色)、与allosamidin产生结合作用的关键残基 (粉色)[12]

    Figure  2.  Crystal structure of OfCht in complex with allosamidin(PDB 6JMB).

    Molecular surfaces of OfChtⅣ are shown in white. Small molecules are shown in blue stick mode, and the key amino acid residues involved in the molecular interaction are shown in pink stick mode[12].

    2  肽类几丁质酶抑制剂

    2.  Peptide chitinase inhibitors

    图  3  亚洲玉米螟几丁质酶 (OfCht) 抑制剂的分子模型

    Figure  3.  Molecular model of inhibitor of O. furnacalis chitinase (OfCht)

    3  由虚拟筛选发现的几丁质酶抑制剂

    3.  Chitinase inhibitors by virtual screening strategy

    4  以天然产物为导向的几丁质酶抑制剂

    4.  Chitinase inhibitors derived from natural products

    5  噻唑烷酮类新型几丁质酶抑制剂

    噻唑烷-4-酮:绿色,2-硫代噻唑烷-4-酮:红色,胡椒基:蓝色。

    5.  Thiazolidinone derivatives as novel chitinase inhibitors

    Thiazolidine-4-one (green), 2-thiothiazolidine-4-one (red), piperonyl (blue).

    6  不同噻唑烷酮类化合物的化学结构式

    6.  Structural formula of different thiazolidinone compounds

    7  噻唑烷-4-酮类化合物合成方法1

    7.  Synthesis method No. 1 of thiazolidine-4-ones

    8  噻唑烷-4-酮类化合物合成方法1——实例1

    8.  Example 1 of synthetic method No.1 for thiazolidine-4-ones

    9  噻唑烷-4-酮类化合物的合成方法1——实例2

    9.  Example 2 of synthesis method No. 1 for thiazolidine-4-ones

    10  噻唑烷-4-酮类化合物合成方法1——实例3

    10.  Example 3 of synthesis method No. 1 for thiazolidine-4-ones

    11  噻唑烷-4-酮类化合物合成方法2

    11.  Synthesis method No. 2 of thiazolidine-4-ones

    12  噻唑烷-4-酮类化合物合成方法2——实例1

    12.  Example 1 of synthesis method No. 2 for of thiazolidine-4-ones

    13  噻唑烷-4-酮类化合物合成方法2——实例2

    13.  Example 2 of synthesis method No. 2 for of thiazolidine-4-ones

    14  2-硫代噻唑烷-4-酮类化合物合成方法1

    14.  Synthesis method No.1 for 2-thiothiazolidine-4-ones

    15  2-硫代噻唑烷-4-酮类化合物合成方法1——实例1

    15.  Example 1 of synthesis method No. 1 for 2-thiothiazolidine-4-ones

    16  具有杀虫活性的2-硫代噻唑烷-4-酮类化合物

    16.  2-Thiothiazolidine-4-ones with insecticidal activity

    17  2-硫代噻唑烷-4-酮类化合物的合成方法2

    17.  Synthesis method No. 2 for 2-thiothiazolidine-4-ones

    18  2-硫代噻唑烷-4-酮类化合物合成方法2——实例1

    18.  Example 1 of synthesis method No. 2 for 2-thiothiazolidine-4-ones

    19  不同2-硫代噻唑烷-4-酮类化合物C-5位修饰

    19.  Modification of C-5 of different 2-thiothiazolidine-4-ones

    20  噻唑烷-2,4-二酮类化合物合成方法

    20.  Synthesis method for thiazolidine-2,4-diones

    21  噻唑烷-2,4-二酮类化合物合成方法应用实例

    21.  Example of synthesis method for thiazolidine-2,4-diones

  • [1] MOUSSIAN B. Chitin: Structure, chemistry and biology[J]. Adv Exp Med Biol, 2019, 1142: 5-18.
    [2] ZHU K Y, MERZENDORFER H, ZHANG W, et al. Biosynthesis, turnover, and functions of chitin in insects[J]. Annu Rev Entomol, 2016, 61: 177-196. doi: 10.1146/annurev-ento-010715-023933
    [3] ADRANGI S, FARAMARZI M A. From bacteria to human: a journey into the world of chitinases[J]. Biotechnol Adv, 2013, 31(8): 1786-1795. doi: 10.1016/j.biotechadv.2013.09.012
    [4] SAGUEZ J, VINCENT C, GIORDANENGO P. Chitinase inhibitors and chitin mimetics for crop protection[J]. Pest Technol, 2008, 2(2): 81-86.
    [5] CHEN W, JIANG X, YANG Q. Glycoside hydrolase family 18 chitinases: the known and the unknown[J]. Biotechnol Adv, 2020: 107553.
    [6] CHEN W, YANG Q. Development of novel pesticides targeting insect chitinases: a minireview and perspective[J]. J Agric Food Chem, 2020, 68(16): 4559-4565. doi: 10.1021/acs.jafc.0c00888
    [7] LIU T, CHEN L, ZHOU Y, et al. Structure, catalysis, and inhibition of OfChi-h, the Lepidoptera-exclusive insect chitinase[J]. J Bio Chem, 2017, 292(6): 2080-2088. doi: 10.1074/jbc.M116.755330
    [8] DAVIES G J, WILSON K S, HENRISSAT B. Nomenclature for sugar-binding subsites in glycosyl hydrolases[J]. Biochem J, 1997, 321: 557-559. doi: 10.1042/bj3210557
    [9] CHEN L, ZHOU Y, QU M B, et al. Fully deacetylated chitooligosaccharides act as efficient glycoside hydrolase family 18 chitinase inhibitors[J]. J Bio Chem, 2014, 289(25): 17932-17940. doi: 10.1074/jbc.M114.564534
    [10] CHEN L, LIU T, ZHOU Y, et al. Structural characteristics of an insect group I chitinase, an enzyme indispensable to moulting[J]. Acta Crystallographica, 2014, 70: 932-942.
    [11] CHEN W, ZHOU Y, YANG Q. Structural dissection reveals a general mechanistic principle for group II chitinase (ChtII) inhibition[J]. J Biol Chem, 2019, 294(24): 9358-9364. doi: 10.1074/jbc.RA119.007812
    [12] LIU T, GUO X G, BU Y F, et al. Structural and biochemical insights into an insect gut-specific chitinase with antifungal activity[J]. Insect Biochem Mol Biol, 2020, 119: 103326. doi: 10.1016/j.ibmb.2020.103326
    [13] CHEN W, QU M B, ZHOU Y, et al. Structural analysis of group II chitinase (ChtII) catalysis completes the puzzle of chitin hydrolysis in insects[J]. J Bio Chem, 2018, 293(8): 2652-2660. doi: 10.1074/jbc.RA117.000119
    [14] SAGUEZ J, DUBIOS F, VINCENT C, et al. Differential aphicidal effects of chitinase inhibitors on the polyphagous homopteran Myzus persicae (Sulzer)[J]. Pest Manag Sci, 2006, 62: 1150–1154.
    [15] RAO F V, ANDERSEN O A, VORA K A, et al. Methylxanthine drugs are chitinase inhibitors: investigation of inhibition and binding modes[J]. Chem Biol, 2005, 12(9): 973-980. doi: 10.1016/j.chembiol.2005.07.009
    [16] RAO F V, HOUSTON D R, BOOT R G, et al. Crystal structures of allosamidin derivatives in complex with human macrophage chitinase[J]. J Biol Chem, 2003, 278(22): 20110-20116. doi: 10.1074/jbc.M300362200
    [17] DUSSOUY C, BULTEL L, SAGUEZ J, et al. Strong aphicidal activity of GlcNAc(β1-4)Glc disaccharides: synthesis, physiological effects, and chitinase inhibition[J]. Chem Eur J, 2012, 18(32): 10021-10028. doi: 10.1002/chem.201200887
    [18] RAO F V, HOUSTON D R, BOOT R G, et al. Specificity and affinity of natural product cyclopentapeptide inhibitors against A. fumigatus, human, and bacterial chitinases[J]. Chem Bio, 2005, 12(1): 65-76. doi: 10.1016/j.chembiol.2004.10.013
    [19] HOUSTON D R, SYNSTAD B, EIJSINK V G H, et al. Structure-based exploration of cyclic dipeptide chitinase inhibitors[J]. J Med Chem, 2004, 47: 5713-5720. doi: 10.1021/jm049940a
    [20] TABUDRAVU J N, EIJSINK V G H, GOODAY G W, et al. Psammaplin A, a chitinase inhibitor isolated from the Fijian Marine Sponge Aplysinella rhax[J]. Bioorg Med Chem, 2002, 10: 1123-1128. doi: 10.1016/S0968-0896(01)00372-8
    [21] JIANG X, KUMAR A, LIU T, et al. A novel scaffold for developing specific or broad-spectrum chitinase inhibitors[J]. J Chem Inf Model, 2016, 56(12): 2413-2420. doi: 10.1021/acs.jcim.6b00615
    [22] DONG Y W, HU S, JIANG X, et al. Pocket-based lead optimization strategy for the design and synthesis of chitinase inhibitors[J]. J Agric Food Chem, 2019, 67(13): 3575-3582. doi: 10.1021/acs.jafc.9b00837
    [23] JIANG X, KUMAR A, MOTOMURA Y, et al. A series of compounds bearing a dipyrido-pyrimidine scaffold acting as novel human and insect pest chitinase inhibitors[J]. J Med Chem, 2020, 63: 987-1001. doi: 10.1021/acs.jmedchem.9b01154
    [24] CHEN L, LIU T, DUAN Y W, et al. Microbial secondary metabolite, Phlegmacin B1, as a novel inhibitor of insect chitinolytic enzymes[J]. J Agric Food Chem, 2017, 65(19): 3851-3857. doi: 10.1021/acs.jafc.7b01710
    [25] DUAN Y W, LIU T, ZHOU Y, et al. Glycoside hydrolase family 18 and 20 enzymes are novel targets of the traditional medicine berberine[J]. J Biol Chem, 2018, 293(40): 15429-15438. doi: 10.1074/jbc.RA118.004351
    [26] HUANG J, XU M, LI S, et al. Synthesis of some ester derivatives of 4′-demethoxyepipodophyllotoxin/2′-chloro-4′-demethoxyepipodophyllotoxin as insecticidal agents against oriental armyworm, Mythimna separata Walker[J]. Bioorg Med Chem Lett, 2017, 27(3): 511-517. doi: 10.1016/j.bmcl.2016.12.026
    [27] SHARMA R K, SINGH V, TIWARI N, et al. Synthesis, antimicrobial and chitinase inhibitory activities of 3-amidocoumarins[J]. Bioorg Chem, 2020, 98: 103700. doi: 10.1016/j.bioorg.2020.103700
    [28] BATRAN R Z, KHEDR M A, ABDEL LATIF N A, et al. Synthesis, homology modeling, molecular docking, dynamics, and antifungal screening of new 4-hydroxycoumarin derivatives as potential chitinase inhibitors[J]. J Mol Struct, 2019, 1180: 260-271. doi: 10.1016/j.molstruc.2018.11.099
    [29] 刘瑾林, 周红, 郭富友, 等. 香豆素类化合物的农药活性及东莨菪内酯杀螨作用机理研究进展[J]. 农药学学报, 2019, 21(5-6): 692-708.

    LIU J L, ZHOU H, GUO F, et al. Research advances in pesticidal activities of coumarin derivatives and acaricidal mechanism of scopoletin[J]. Chin J Pestic Sci, 2019, 21(5-6): 692-708.
    [30] ZHOU H, ZHANG Y Q, LAI T, et al. Silencing chitinase genes increases susceptibility of Tetranychus cinnabarinus (Boisduval) to scopoletin[J]. Biomed Res Int, 2017, 201: 9579736.
    [31] YANG H B, LIU T, QI H T, et al. Design and synthesis of thiazolylhydrazone derivatives as inhibitors of chitinolytic N-acetyl-β-d-hexosaminidase[J]. Bioorg Med Chem, 2018, 26(20): 5420-5426. doi: 10.1016/j.bmc.2018.09.014
    [32] YANG H B, QI H T, HAO Z S, et al. Thiazolylhydrazone dervatives as inhibitors for insect N-acetyl-β-d-hexosaminidase and chitinase[J]. Chin Chem Lett, 2020, 31(5): 1271-1275. doi: 10.1016/j.cclet.2019.11.035
    [33] 段红霞, 韩清, 杨青, 等. 具有胡椒碱骨架结构化合物、制备及其应用 [P]. 中国专利: 202010099606.0, 2020-06-12.

    DUAN H X, HAN Q, YANG Q, et al. Compounds with piperine skeleton structure, and their preparation and application [P]. China Patent: 202010099606.0, 2020-06-12.
    [34] PAREEK D, CHAUDHARY M, PAREEK P K, et al. Synthesis of some bioactive 4-thiazolidinone derivatives incorporating benzothiazole moiety[J]. Der Chemica Sinica, 2010, 1(3): 22-35.
    [35] TIRLAPUR V K, TADMALLE T. Synthesis and insecticidal activity of 1,2,4-triazolo-thiazolidin-4-one derivatives[J]. Der Pharmacia Sinica, 2011, 2(1): 135-141.
    [36] INAMORI Y, OKAMOTO Y, TAKEGAWA Y, et al. Insecticidal and antifungal activities of aminorhodanine derivatives[J]. Biosci Biotechnol Biochem, 1998, 62(5): 1025-1027. doi: 10.1271/bbb.62.1025
    [37] 周中振, 陈琼籼, 杨光富. 微波辅助下-酰胺基-2-(4-氧代-4H-色烯-3-基)噻唑-4-酮类衍生物的平行合成及其杀虫活性[J]. 有机化学, 2008, 28(8): 1385-1392.

    ZHOU Z Z, CHEN Q X, YANG G F. Synthesis and insecticidal activities of carbonylamido-2-(4-oxo-4H-1-benzopyran-3-yl)-4-thiazolidinones derivatives by microwave-assisted parallel syntheses[J]. Chin J Org Chem, 2008, 28(8): 1385-1392.
    [38] BASHOUR J T. Rhodanines and their use as pesticides, US2743211 [P]. 1956.
    [39] 陈 华, 白 洁, 赵 莲, 等. 2-(2,6-二氯苯基)-1,3-噻唑烷-4-酮衍生物的微波促进合成及抗真菌、抗肿瘤活性研究[J]. 有机化学, 2009, 29(1): 94-99.

    CHEN H, BAI J, ZHAO L, et al. Microwave assisted synthesis and antifungal, anti-tumor study of 2-(2,6-dichlorophenyl)-1,3-thiazolidin-4-ones[J]. Chin J Org Chem, 2009, 29(1): 94-99.
    [40] CHANNAR P A, SAEED A, LARIK F A, et al. Synthesis, computational studies and enzyme inhibitory kinetics of substituted methyl[2-(4-dimethylamino-benzylidene)-hydrazono)-4-oxo-thiazolidin-5-ylidene]ace tates as mushroom tyrosinase inhibitors[J]. Bioorg Med Chem, 2017, 25(21): 5929-5938. doi: 10.1016/j.bmc.2017.09.009
    [41] LIU J B, WU F Y, CHEN L J, et al. Evaluation of dihydropyrimidin-(2H)-one analogues and rhodanine derivatives as tyrosinase inhibitors[J]. Bioorg Med Chem Lett, 2011, 21: 2376-2379. doi: 10.1016/j.bmcl.2011.02.076
    [42] MUTAHIR S, KHAN M A, KHAN I U, et al. Organocatalyzed and mechanochemical solvent-free synthesis of novel and functionalized bis-biphenyl substituted thiazolidinones as potent tyrosinase inhibitors: SAR and molecular modeling studies[J]. Eur J Med Chem, 2017, 134: 406-14. doi: 10.1016/j.ejmech.2017.04.021
    [43] METWALLY N H, RADWAN I T, EL-SERWY W S, et al. Design, synthesis, DNA assessment and molecular docking study of novel 2-(pyridin-2-ylimino)thiazolidin-4-one derivatives as potent antifungal agents[J]. Bioorg Chem, 2019, 84: 456-467. doi: 10.1016/j.bioorg.2018.11.050
    [44] MANJAL S K, KAUR R, BHATIA R, et al. Synthetic and medicinal perspective of thiazolidinones: a review[J]. Bioorg Chem, 2017, 75: 406-423. doi: 10.1016/j.bioorg.2017.10.014
    [45] BILGICLI H G, TASLIMI P, AKYUZ B, et al. Synthesis, characterization, biological evaluation, and molecular docking studies of some piperonyl-based 4-thiazolidinone derivatives[J]. Arch Pharm Chem Life Sci, 2019: e1900304.
    [46] SANJEEVA REDDY C, RAJESH KUMAR G, SUNITHA B. Synthesis, antimicrobial and nematicidal evaluation of a new class of triazolo[4,3-c]quinazolinylthiazolidinones[J]. Med Chem Res, 2016, 25(5): 923-931. doi: 10.1007/s00044-016-1538-6
    [47] BROWN J P. Insecticidal rhodanine derivatives, GB1099798 [P]. 1968.
    [48] BAYINDIR S, CAGLAYAN C, KARAMAN M, et al. The green synthesis and molecular docking of novel N-substituted rhodanines as effective inhibitors for carbonic anhydrase and acetylcholinesterase enzymes[J]. Bioorganic Chemistry, 2019, 90: 103096. doi: 10.1016/j.bioorg.2019.103096
    [49] LIU J, WU F, CHEN L, et al. Evaluation of dihydropyrimidin-(2H)-one analogues and rhodanine derivatives as tyrosinase inhibitors[J]. Bioorg Med Chem Let, 2011, 21: 2376-2379.
    [50] EL-GABY M S A, EL-HAG ALI G A M, EL-MAGHRABY A A, et al. Synthesis, characterization and in vitro antimicrobial activity of novel 2-thioxo-4-thiazolidinones and 4,4′-bis(2-thioxo-4-thiazolidinone-3-yl)diphenylsulfones[J]. Eur J Med Chem, 2009, 44(10): 4148-4152. doi: 10.1016/j.ejmech.2009.05.005
    [51] EL-KASHEF H, BADR G, EL-MAALI N A, et al. Synthesis of a novel series of (Z)-3,5-disubstituted thiazolidine-2,4-diones as promising anti-breast cancer agents[J]. Bioorg Chem, 2020, 96: 103569. doi: 10.1016/j.bioorg.2020.103569
    [52] SHARMA P, REDDY T S, KUMAR N P, et al. Conventional and microwave-assisted synthesis of new 1H-benzimidazole-thiazolidinedione derivatives: A potential anticancer scaffold[J]. Eur J Med Chem, 2017, 138: 234-45. doi: 10.1016/j.ejmech.2017.06.035
  • 加载中
计量
  • 文章访问数:  267
  • HTML全文浏览量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-07
  • 录用日期:  2020-12-04
  • 网络出版日期:  2020-12-23

目录

    /

    返回文章
    返回