• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

戊唑醇对不同酿酒酵母模拟发酵过程中葡萄酒风味品质的影响

赵珊珊 李敏敏 李瑞瑆 全蕊 陈捷胤 戴小枫 孔志强 田健

赵珊珊, 李敏敏, 李瑞瑆, 全蕊, 陈捷胤, 戴小枫, 孔志强, 田健. 戊唑醇对不同酿酒酵母模拟发酵过程中葡萄酒风味品质的影响[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2021.0079
引用本文: 赵珊珊, 李敏敏, 李瑞瑆, 全蕊, 陈捷胤, 戴小枫, 孔志强, 田健. 戊唑醇对不同酿酒酵母模拟发酵过程中葡萄酒风味品质的影响[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2021.0079
Shanshan ZHAO, Minmin LI, Ruixing LI, Rui QUAN, Jieyin CHEN, Xiaofeng DAI, Zhiqiang KONG, Jian TIAN. Effect of Residual Tebuconazole on the Flavor Quality of Different Saccharomyces cerevisiae Simulated Fermentation Process[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2021.0079
Citation: Shanshan ZHAO, Minmin LI, Ruixing LI, Rui QUAN, Jieyin CHEN, Xiaofeng DAI, Zhiqiang KONG, Jian TIAN. Effect of Residual Tebuconazole on the Flavor Quality of Different Saccharomyces cerevisiae Simulated Fermentation Process[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2021.0079

戊唑醇对不同酿酒酵母模拟发酵过程中葡萄酒风味品质的影响

doi: 10.16801/j.issn.1008-7303.2021.0079
基金项目: 国家自然科学基金 (31671942);北京市科技新星计划项目 (Z191100001119121)
详细信息
    作者简介:

    赵珊珊,女,硕士研究生,E­mail:zhaoss543@163.com

    通讯作者:

    孔志强,共同通信作者 (Co-author for correspondence),男,副研究员,研究方向为农药残留与环境毒理,E-mail:kongzhiqiang@caas.cn

    田健,通信作者 (Author for correspondence),男,研究员,研究方向为蛋白质分子设计与改良、微生物重要基因资源挖掘,E-mail:tianjian@caas.cn

  • 中图分类号: TS207.7;O657.7

Effect of Residual Tebuconazole on the Flavor Quality of Different Saccharomyces cerevisiae Simulated Fermentation Process

  • 摘要: 为探究葡萄酒中不同酿酒酵母作用下戊唑醇降解状况以及戊唑醇残留对不同酿酒酵母发酵过程风味品质的影响,本研究在模拟葡萄汁培养基中添加2 mg/L戊唑醇标准溶液,采用生产上常用的12种葡萄酒酿制酵母进行模拟酒精发酵处理,运用QuEChERS分析方法测定葡萄酒中的戊唑醇残留量,并利用电子鼻、电子舌及固相微萃取气相色谱-质谱技术 (SPME-GC-MS) 分析戊唑醇残留对葡萄酒风味品质的影响。结果表明:葡萄酒酿造中的酵母菌酒精发酵过程可促进戊唑醇残留降解,不同酿酒酵母对戊唑醇的降解效果不同,其中D254、RC212、BO213和AC对戊唑醇的降解作用较好,降解率在21%~23%之间。戊唑醇可显著改变酒精发酵过程产生的香气成分,严重抑制苯甲醇 (苦杏仁味) 生成从而破坏葡萄酒风味结构。所测12种酵母菌中,AC菌株在酒精发酵过程中风味物质的形成受戊唑醇影响最小。综上,建议葡萄酒酿造中可考虑选择酵母菌AC进行发酵。
  • 图  1  12种酵母菌对戊唑醇残留降解率

    图中有相同字母表示差异不显著,无相同字母的数据表示差异显著 (P < 0.05)。

    Figure  1.  The effect of 12different kinds yeast on degradation rate of tebuconazole residue

    The same letter in the figure indicates that the difference is not significant at P < 0.05, and the data without the same letter indicates significantly different.

    图  2  模拟葡萄酒发酵液电子鼻载荷分析

    Figure  2.  Electronic nose loading analysis of simulated wine samples

    图  3  AC菌株模拟葡萄汁发酵液味觉分析图

    Figure  3.  Yeast named AC simulation of grape juice fermentation broth

    图  4  AC菌株的B、C组色谱对比图,黑色 (上) 为B组处理下的离子流色谱图,红色 (下) 为C组处理下的离子流色谱图

    Figure  4.  Chromatographic comparison of group B and C of AC yeast strain,The black graph (top) is the ion chromatogram of group B, and the red graph (bottom) is the ion chromatogram of group C

    表  1  各模拟发酵液味觉差异表

    Table  1.   Differences in taste of each simulated fermentation broth

    样品名称
    Product names
    参照样品名称
    Reference samples
    差异值
    Distances
    P值 (<0.01)
    P value (<0.01)
    B-ACC-AC22.10.00
    B-F15C-F1550.30.00
    B-EC1118C-EC111875.30.00
    B-RC212C-RC21276.20.00
    B-X16C-X1690.40.00
    B-BO213C-BO21391.80.00
    B-D254C-D25497.50.00
    B-F33C-F33114.30.00
    B-71BC-71B144.00.00
    B-2323C-2323147.70.00
    B-KDC-KD169.80.00
    B-帝伯仕C-帝伯仕235.90.00
    下载: 导出CSV

    表  2  酵母菌AC模拟葡萄汁发酵液发酵产生主挥发性成分

    Table  2.   AC simulates the main volatile components produced by fermentation of grape juice fermentation broth

    化合物
    compound
    样品名称
    Product names
    保留指数
    Retention
    index
    B-ACC-AC
    醇类
    Alcohols
    乙醇 Ethanol + + 463
    异丁醇 2-Methyl-1-propanol + 597
    异戊醇 3-Methyl-1-butanol + + 697
    3-甲氧基-1,2-丙二醇
    3-Methoxy-1,2-propanediol
    + + 900
    (2R,3R)-(-)-2,3-丁二醇
    (R,R)-2,3-Butanediol
    + + 743
    苯甲醇 Benzyl alcohol + 1036
    苯乙醇 Phenethyl alcohol + 1136
    酯类
    Esters
    乙酸异戊酯 Isoamyl acetate + + 820
    正己酸乙酯 Ethyl caproate + + 984
    庚酸乙酯 Ethyl heptanoate + 1083
    辛酸乙酯 Ethyl caprylate + + 1183
    正癸酸乙酯 Ethyl caprate + + 1381
    辛酸3-甲基丁酯
    3-methylbutyl ester
    + 1417
    乙基9-癸烯酸酯
    Ethyl 9-decenoate
    + + 1371
    乙酸苯乙酯 Phenethyl acetate + + 1259
    月桂酸乙酯 Ethyl laurate + + 1580
    癸酸3-甲基丁酯
    3-methylbutyl ester
    + 1615
    9-十六碳烯酸乙酯
    9-Hexadecenoic acid
    + 1986
    酸类
    Acids
    乙酸 Acetic acid glacial + + 576
    异戊酸 Isovaleric acid + 811
    2-甲基丁酸
    DL-2-Methylbutyric acid
    + 811
    注:+表示此样品在SPME-GC-MS分析中该物质被检出,−表示未被检出。Note:+ Means that this sample was detected in SPME-GC-MS analysis, − means that it has not been detected.
    下载: 导出CSV
  • [1] 罗江钊. 葡萄酒加工中发酵对残留杀菌剂的降解研究[D]. 天津: 天津科技大学, 2015: 1-6.

    LUO J Z. Persistence and degradation of fungicide during the winemaking process in relation to alcohol fermentation[D]. Tianjin: Tianjin University of Science and Technology, 2015: 1-6.
    [2] JARDIM A N O, CALDAS E D. Brazilian monitoring programs for pesticide residues in food-Results from 2001 to 2010[J]. Food Control, 2012, 25(2): 607-616. doi: 10.1016/j.foodcont.2011.11.001
    [3] 薛洁, 张敬, 梁萌萌, 等. 葡萄酒中农药残留的调查研究[J]. 酿酒科技, 2014(7): 4-8.

    XUE J, ZHANG J, LIANG M M, et al. Research on residual pesticide in grape wine[J]. Liquor-Mak Sci Technol, 2014(7): 4-8.
    [4] 韩舜愈, 李敏. 葡萄酒质量安全风险及其控制[J]. 食品科学技术学报, 2016, 34(2): 12-17.

    HAN S Y, LI M. Safety risk and its control of wine[J]. J Food Sci Technol, 2016, 34(2): 12-17.
    [5] MULERO J, MARTÍNEZ G, OLIVA J, et al. Phenolic compounds and antioxidant activity of red wine made from grapes treated with different fungicides[J]. Food Chem, 2015, 180: 25-31. doi: 10.1016/j.foodchem.2015.01.141
    [6] NOGUEROL-PATO R, SIEIRO-SAMPEDRO T, GONZÁLEZ-BARREIRO C, et al. Evaluation of the effect of fenhexamid and mepanipyrim in the volatile composition of Tempranillo and Graciano wines[J]. Food Res Int, 2015, 71: 108-117. doi: 10.1016/j.foodres.2015.02.025
    [7] ZHANG M M, WEN Y L, LUO X L, et al. Characterization, mechanism of cypermethrin biosorption by Saccharomyces cerevisiae strains YS81 and HP and removal of cypermethrin from apple and cucumber juices by inactive cells[J]. J Hazard Mater, 2021, 407: 124350. doi: 10.1016/j.jhazmat.2020.124350
    [8] ČUŠ F, ČESNIK H B, BOLTA Š V, et al. Pesticide residues in grapes and during vinification process[J]. Food Control, 2010, 21(11): 1512-1518. doi: 10.1016/j.foodcont.2010.04.024
    [9] CABRAS P, ANGIONI A. Pesticide residues in grapes, wine, and their processing products[J]. J Agric Food Chem, 2000, 48(4): 967-973. doi: 10.1021/jf990727a
    [10] GONZÁLEZ-RODRÍGUEZ R M, CANCHO-GRANDE B, SIMAL-GÁNDARA J. Decay of fungicide residues during vinification of white grapes harvested after the application of some new active substances against downy mildew[J]. Food Chem, 2011, 125(2): 549-560. doi: 10.1016/j.foodchem.2010.09.047
    [11] KONG Z Q, LI M M, CHEN J Y, et al. Behavior of field-applied triadimefon, malathion, dichlorvos, and their main metabolites during barley storage and beer processing[J]. Food Chem, 2016, 211: 679-686. doi: 10.1016/j.foodchem.2016.05.058
    [12] RUEDIGER G A, PARDON K H, SAS A N, et al. Fate of pesticides during the winemaking process in relation to malolactic fermentation[J]. J Agric Food Chem, 2005, 53(8): 3023-3026. doi: 10.1021/jf048388v
    [13] CABRAS P, ANGIONI A, GARAU V L, et al. Pesticides in fermentative processes of wine[J]. J Agric Food Chem, 1999, 47(9): 3854-3857. doi: 10.1021/jf990005j
    [14] GONZÁLEZ-ÁLVAREZ M, GONZÁLEZ-BARREIRO C, CANCHO-GRANDE B, et al. Impact of phytosanitary treatments with fungicides (cyazofamid, famoxadone, mandipropamid and valifenalate) on aroma compounds of Godello white wines[J]. Food Chem, 2012, 131(3): 826-836. doi: 10.1016/j.foodchem.2011.09.053
    [15] 李记明, 司合芸, 于英, 等. 葡萄农药残留及其对葡萄酒酿造的影响[J]. 中国农业科学, 2012, 45(4): 743-751. doi: 10.3864/j.issn.0578-1752.2012.04.015

    LI J M, SI H Y, YU Y, et al. Effects of the residues of agricultural chemicals in grapes on winemaking[J]. Sci Agric Sin, 2012, 45(4): 743-751. doi: 10.3864/j.issn.0578-1752.2012.04.015
    [16] 王琼, 徐宝才, 于海, 等. 电子鼻和电子舌结合模糊数学感官评价优化培根烟熏工艺[J]. 中国农业科学, 2017, 50(1): 161-170.

    WANG Q, XU B C, YU H, et al. Electronic nose and electronic tongue combined with fuzzy mathematics sensory evaluation to optimize bacon smoking procedure[J]. Sci Agric Sin, 2017, 50(1): 161-170.
    [17] GARCIA-HERNANDEZ C, SALVO-COMINO C, MARTIN-PEDROSA F, et al. Analysis of red wines using an electronic tongue and infrared spectroscopy. Correlations with phenolic content and color parameters[J]. LWT, 2020, 118: 108785. doi: 10.1016/j.lwt.2019.108785
    [18] 贾博, 刘灵伶, 刘兴艳, 等. Cu2+对酿酒酵母酒精发酵特性的影响[J]. 现代食品科技, 2015, 31(1): 32-36.

    JIA B, LIU L L, LIU X Y, et al. Effect of Cu2+ on Fermentation Characteristics of Saccharomyces cerevisiae[J]. Mod Food Sci Technol, 2015, 31(1): 32-36.
    [19] 吴启凤, 李红梅, 杨胜涵, 等. 水晶葡萄酿酒酵母菌的分离筛选及酿酒性能研究[J]. 中国酿造, 2019, 38(7): 65-69.

    WU Q F, LI H M, YANG S H, et al. Isolation and screening of Saccharomyces cerevisiae from Shuijing grapes and its enological characteristics[J]. China Brew, 2019, 38(7): 65-69.
    [20] 祝霞, 刘琦, 赵丹丹, 等. 酿造条件对酿酒酵母发酵香气的影响[J]. 食品科学, 2019, 40(16): 115-123.

    ZHU X, LIU Q, ZHAO D D, et al. Effect of different winemaking conditions on fermentation aroma production by saccharomyces cerevisiae[J]. Food Sci, 2019, 40(16): 115-123.
    [21] 食品安全国家标准 食品中农药最大残留限量: GB2763-2019[M]. 北京: 中国标准出版社. 2019: 244.

    National food safety standard-Maximum residue limits for pesticides in food: GB2763-2019[M]. Beijing: Standards Press of China. 2019: 244.
    [22] 姜越, 潘婷, 惠竹梅. 模拟葡萄汁中可同化氮和还原糖对酵母发酵特性的影响[J]. 食品科学, 2018, 39(2): 131-137.

    JIANG Y, PAN T, HUI Z M. Effect of assimilable nitrogen and reducing sugar concentrations of synthetic grape must on the fermentation characteristics of saccharomyces cerevisiae[J]. Food Sci, 2018, 39(2): 131-137.
    [23] 原苗苗, 赵新节, 姜凯凯, 等. 3株非酿酒酵母在模拟葡萄汁中的生长特性与发酵香气[J]. 食品工业科技, 2018, 39(9): 111-118.

    YUAN M M, ZHAO X J, JIANG K K, et al. Growth characteristics and fermentation aroma compounds of three non-Saccharomyces in model synthetic medium[J]. Sci Technol Food Ind, 2018, 39(9): 111-118.
    [24] 李婷, 陈景桦, 马得草, 等. 优选非酿酒酵母与酿酒酵母在模拟葡萄汁发酵中生长动力学及酯酶活性分析[J]. 食品科学, 2017, 38(22): 60-66.

    LI T, CHEN J H, MA D C, et al. Growth kinetics and esterase activities of selected non-saccharomyces yeast and saccharomyces cerevisiae in the fermentation of model grape juice[J]. Food Sci, 2017, 38(22): 60-66.
    [25] 曹俊, 刘欣, 陈文若, 等. 基于E-NOSE与SPME-GC/MS技术分析温湿度动态变化过程中稻谷的挥发性成分[J]. 中国农业科学, 2017, 50(1): 142-160.

    CAO J, LIU X, CHEN W R, et al. The volatile compositions from rice stored with dynamic temperature and humidity based on SPME-GC/MS and electronic nose (e-nose) technics[J]. Sci Agric Sin, 2017, 50(1): 142-160.
    [26] LU Q, LIU F F, BAO J Q. Volatile components of American silver carp analyzed by electronic nose and MMSE-GC-MS-O[J]. J Food Biochem, 2019, 43(11): 13006-13020.
    [27] RAZZAGHI N, ZIARATI P, RASTEGAR H, et al. The concentration and probabilistic health risk assessment of pesticide residues in commercially available olive oils in Iran[J]. Food Chem Toxicol, 2018, 120: 32-40. doi: 10.1016/j.fct.2018.07.002
    [28] CCPR. Guidelines on performance criteria for methods of analysis for the determination of pesticide residues in food and feed: CAC/GL 90-2017[S]. 2017, 1-12.
    [29] NOGUEROL-PATO R, GONZÁLEZ-RODRÍGUEZ R M, GONZÁLEZ-BARREIRO C, et al. Influence of tebuconazole residues on the aroma composition of Mencía red wines[J]. Food Chem, 2011, 124(4): 1525-1532. doi: 10.1016/j.foodchem.2010.08.006
    [30] ANGIONI A, DEDOLA F, GARAU V L, et al. Fate of iprovalicarb, indoxacarb, and boscalid residues in grapes and wine by GC-ITMS analysis[J]. J Agric Food Chem, 2011, 59(12): 6806-6812. doi: 10.1021/jf2011672
    [31] DOULIA D S, ANAGNOS E K, LIAPIS K S, et al. Effect of clarification process on the removal of pesticide residues in white wine[J]. Food Control, 2017, 72: 134-144. doi: 10.1016/j.foodcont.2016.07.035
    [32] 王玉路, 王宗义, 贾昌喜, 等. 葡萄酒酿造过程中12种残留杀菌剂的归趋追踪[J]. 食品与发酵工业, 2016, 42(3): 114-118.

    WANG Y L, WANG Z Y, JIA C X, et al. Fate tracing for 12 residual fungicides in grapes during vinification process[J]. Food Ferment Ind, 2016, 42(3): 114-118.
    [33] CABRAS P, ANGIONI A. Pesticide residues in grapes, wine, and their processing products[J]. J Agric Food Chem, 2000, 48(4): 967-973. doi: 10.1021/jf990727a
    [34] 李海兰, 叶慧琼, 王忠跃, 等. 3种杀真菌剂对葡萄酒酿酒酵母生长及发酵性能的影响[J]. 中外葡萄与葡萄酒, 2009(7): 5-9.

    LI H L, YE H Q, WANG Z Y, et al. Influence of three fungicides on growth and fermentability of wine yeast[J]. Sino-Overseas Grapevine Wine, 2009(7): 5-9.
    [35] CALHELHA R C, ANDRADE J V, FERREIRA I C, et al. Toxicity effects of fungicide residues on the wine-producing process[J]. Food Microbiol, 2006, 23(4): 393-398. doi: 10.1016/j.fm.2005.04.008
    [36] 赵玉娟. 葡萄酒香气物质及其影响因素研究[J]. 酿酒科技, 2015(4): 58-60, 64.

    ZHAO Y J. The aromatic components of grape wine and their influencing factors[J]. Liquor-Mak Sci Technol, 2015(4): 58-60, 64.
    [37] FERNÁNDEZ M J, OLIVA J, BARBA A, et al. Effects of clarification and filtration processes on the removal of fungicide residues in red wines (var. Monastrell)[J]. J Agric Food Chem, 2005, 53(15): 6156-6161. doi: 10.1021/jf0580162
    [38] BRIZ-CID N, CASTRO-SOBRINO L, RIAL-OTERO R, et al. Fungicide residues affect the sensory properties and flavonoid composition of red wine[J]. J Food Compos Anal, 2018, 66: 185-192. doi: 10.1016/j.jfca.2017.12.021
    [39] NOGUEROL-PATO R, SIEIRO-SAMPEDRO T, GONZÁLEZ-BARREIRO C, et al. Effect on the aroma profile of Graciano and Tempranillo red wines of the application of two antifungal treatments onto vines[J]. Molecules, 2014, 19(8): 12173-12193. doi: 10.3390/molecules190812173
  • 加载中
计量
  • 文章访问数:  22
  • HTML全文浏览量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-18
  • 录用日期:  2021-02-06
  • 网络出版日期:  2021-04-13

目录

    /

    返回文章
    返回