• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仲丁灵在人参中的残留及消解动态

尤庆航 彭湃 宋雨桐 方楠 朱宗利 侯新港 梁爽 逯忠斌 曲彤 侯志广

尤庆航, 彭湃, 宋雨桐, 方楠, 朱宗利, 侯新港, 梁爽, 逯忠斌, 曲彤, 侯志广. 仲丁灵在人参中的残留及消解动态[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2021.0082
引用本文: 尤庆航, 彭湃, 宋雨桐, 方楠, 朱宗利, 侯新港, 梁爽, 逯忠斌, 曲彤, 侯志广. 仲丁灵在人参中的残留及消解动态[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2021.0082
Qinghang YOU, Pai PENG, Yutong SONG, Nan FANG, Zongli ZHU, Xingang HOU, Shuang LIANG, Zhongbin LU, Tong QU, Zhiguang HOU. Residues and dissipation dynamics of butralin in ginseng[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2021.0082
Citation: Qinghang YOU, Pai PENG, Yutong SONG, Nan FANG, Zongli ZHU, Xingang HOU, Shuang LIANG, Zhongbin LU, Tong QU, Zhiguang HOU. Residues and dissipation dynamics of butralin in ginseng[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2021.0082

仲丁灵在人参中的残留及消解动态

doi: 10.16801/j.issn.1008-7303.2021.0082
基金项目: 吉林省参茸办人参产业发展专项资金人参中嘧菌酯等32种农药残留量的测定 (201501)
详细信息
    作者简介:

    尤庆航,男,硕士研究生,E­mail:1211657527@qq.com

    通讯作者:

    侯志广,通信作者 (Author for correspondence),男,副教授,主要从事农药残留分析与环境毒理研究,E-mail:zhiguanghou@163.com

  • 中图分类号: TQ450.2; O657.63; X592

Residues and dissipation dynamics of butralin in ginseng

  • 摘要: 建立了高效液相色谱-串联质谱(HPLC-MS/MS)测定人参中仲丁灵残留的分析方法,并研究其在人参中的最终残留量与消解规律。样品经乙腈提取,NH2固相萃取柱净化,液相色谱-串联质谱仪检测,外标法定量。结果表明:在0.002~0.5 mg/L内,仲丁灵的质量浓度与对应的峰面积间线性关系良好,鲜人参和干人参在0.01、0.05和0.5 mg/kg,人参植株和人参土壤在0.01、0.05、0.5和10 mg/kg添加水平下,仲丁灵的回收率为93%~108%,相对标准偏差为0.60%~6.2%。仲丁灵在人参植株和土壤中的半衰期为10.81~18.91 d,在鲜人参、干人参、人参植株和人参土壤中的最终残留量分别为<LOQ~0.010、<LOQ~0.024、0.011~0.19和0.16~0.41 mg/kg。建议我国仲丁灵在人参中的最大残留限量(MRL)暂定为0.05 mg/kg,48%仲丁灵乳油以制剂量3750 g/hm2(有效成分1800 g/hm2)在人参出苗前于土壤表面喷雾施药1次,收获期人参安全。
  • 图  1  不同流动相组合对仲丁灵色谱峰的影响

    a:甲醇-纯水 (0.1%甲酸+5 mmol/L甲酸铵),b:甲醇-纯水 (0.1%甲酸),c:甲醇-纯水 (5 mmol/L氢氧化铵),d:甲醇-纯水。

    Figure  1.  The effect of different mobile phase combinations on the chromatographic peak of butralin

    a: methanol-water (0.1% formic acid + 5 mmol/L ammonium formate), b: methanol-water (0.1% formic acid), c: methanol-water (5 mmol/L ammonium hydroxide), d: methanol-pure water.

    图  2  仲丁灵在人参土壤 (A) 及人参植株 (B) 中的消解动态 (2019)

    Figure  2.  Dissipation dynamic of butralin in ginseng soil (A) and ginseng plant (B) (2019)

    表  1  仲丁灵的质谱参数

    Table  1.   Mass spectrometric parameters of butralin

    农药
    Pesticide
    定量离子
    Quantitative
    ion,
    m/z
    定性离子
    Qualitative
    ions,
    m/z
    源内碎裂电压
    Fragmentor/
    V
    碰撞能
    Collision
    energy/
    V
    仲丁灵 Butralin296.2/240.2296.2/240.27012
    296.2/222.27023
    下载: 导出CSV

    表  2  仲丁灵在人参中的线性方程及基质效应

    Table  2.   Linear equations and matrix effects of butralin in ginseng

    基质
    Matrix
    线性方程
    Linear equation
    相关系数
    r
    基质效应
    Me/%
    乙腈
    Acetonitrile
    y = 1.5 × 107x−51992 0.9996
    鲜人参
    Fresh ginseng
    y = 3.6 × 107x−164731 0.9986 2.4
    干人参
    Dried ginseng
    y = 4.4 × 107x−26594 0.9997 2.9
    人参植株
    Ginseng plant
    y = 5.0 × 107x−484887 0.9979 3.3
    土壤 soil y = 4.9 × 107x−332568 0.9993 2.2
    下载: 导出CSV

    表  3  仲丁灵在人参及人参土壤中的添加回收率和相对标准偏差

    Table  3.   Recoveries and RSDs of butralin in ginseng and ginseng soil

    基质
    Matrix
    添加水平
    Spiked level/(mg/kg)
    平均回收率
    Average recovery/%
    相对标准偏差
    RSD/%
    鲜人参
    Fresh ginseng
    0.01 108 1.4
    0.05 105 2.5
    0.5 98 1.7
    干人参
    Dried ginseng
    0.01 93 6.2
    0.05 97 0.9
    0.5 98 0.6
    人参植株
    Ginseng plant
    0.01 98 2.5
    0.05 106 1.2
    0.5 94 1.3
    10 98 1.3
    人参土壤
    Ginseng soil
    0.01 103 0.8
    0.05 100 5.7
    0.5 107 2.2
    10 95 1.3
    下载: 导出CSV

    表  4  仲丁灵在人参植株及人参土壤中的消解动态

    Table  4.   Dissipation dynamics of butralin in ginseng plant and ginseng soil

    采样时间
    Sampling time/d
    人参土壤 Ginseng soil 人参植株 Ginseng plant
    白山 Baishan 桓仁 Huanren 白山 Baishan 桓仁 Huanren
    残留量
    Residue/
    (mg/kg)
    消解率
    Dissipation
    rate/%
    残留量
    Residue/
    (mg/kg)
    消解率
    Dissipation
    rate/%
    残留量
    Residue/
    (mg/kg)
    消解率
    Dissipation
    rate/%
    残留量
    Residue/
    (mg/kg)
    消解率
    Dissipation
    rate/%
    0 2.5 1.4 3.1 2.5
    1 2.0 19.9 1.2 11.3 2.6 18.1 1.9 25.4
    3 1.6 37.4 0.85 37.9 2.4 22.6 1.6 34.4
    7 1.3 48.2 0.82 39.7 2.0 35.6 1.4 44.3
    14 1.1 55.8 0.68 50.4 1.3 59.2 0.93 63
    20 0.85 66.6 0.66 51.8 0.91 71.1 0.81 67.9
    30 0.67 73.4 0.53 61.4 0.50 83.9 0.46 81.7
    45 0.52 79.5 0.34 75.4 0.44 86.2 0.45 81.7
    60 0.32 87.3 0.29 78.6 0.36 88.7 0.28 89.0
    消解曲线
    Dissipation curve
    ct = 1.8711e−0.031t ct = 1.0754e−0.024t ct = 2.4579e−0.038t ct = 1.8132e−0.034t
    相关系数 r 0.9723 0.9633 0.9571 0.9612
    半衰期 t1/2/d 12.63 18.91 11.80 10.81
    下载: 导出CSV

    表  5  仲丁灵在人参及人参土壤中的最终残留量

    Table  5.   Terminal residues of butralin in ginseng and ginseng soil

    基质
    Matrix
    施药剂量
    Dosage, a.i./(g/hm2)
    施药次数
    Numbers of times sprayed
    最终残留量 Terminal residues /(mg/kg)
    延吉
    Yanji
    白山
    Baishan
    抚松
    Fusong
    桓仁
    Huanren
    鲜人参 Fresh ginseng 1800 1 0.010 <LOQ <LOQ <LOQ
    干人参 Dried ginseng 1800 1 0.015 0.011 <LOQ 0.024
    人参植株 Ginseng plant 1800 1 0.011 0.018 0.020 0.19
    人参土壤 Ginseng soil 1800 1 0.26 0.27 0.16 0.41
    下载: 导出CSV
  • [1] ZHANG R Q, LV C, LU J C. Studies on laccase mediated conversion of lignin from ginseng residues for the production of sugars[J], Bioresour Technol, 2020, 317. doi: https://doi.org/10.1016/j.biortech.2020.123945.
    [2] RATAN Z A, HAIDERE M F, HONG Y H, et al. Pharmacological potential of ginseng and its major component ginsenosides[J], J Ginseng Res, 2020, doi: https://doi.org/10.1016/j.jgr.2020.02.004.
    [3] RU Y, LIU K X, KONG X Y, et al. Synthesis of selenylated polysaccharides from Momordica charantia L. and its hypoglycemic activity in streptozotocin-induced diabetic mice[J]. Int J Biol Macromol, 2020, 152: 295-304. doi: 10.1016/j.ijbiomac.2020.02.288
    [4] JIA L, ZHAO Y, LIANG X J. Current evaluation of the millennium phytomedicine- ginseng (II): collected chemical entities, modern pharmacology, and clinical applications emanated from traditional chinese medicine[J]. Curr Med Chem, 2009, 16(22): 2924-2942. doi: 10.2174/092986709788803204
    [5] 齐继成. 人参和人参皂甙开发应用概况[J]. 中国医药技术与市场, 2005(4): 28-32.

    QI J C. General situation of development and application of ginseng and ginsenosides[J]. Pharm Technol Exch, 2005(4): 28-32.
    [6] 曹志强. 人参种植业现代化的思考—园参种植向规模化和精细化转变[J]. 人参研究, 2016, 28(4): 53-54. doi: 10.3969/j.issn.1671-1521.2016.04.015

    CAO Z Q. Thinking about the modernization of ginseng planting industry-The transformation of garden ginseng planting to large-scale and refined[J]. Ginseng Res, 2016, 28(4): 53-54. doi: 10.3969/j.issn.1671-1521.2016.04.015
    [7] 张建莹, 岳振峰, 蔡伊娜, 等. 超高效液相色谱-串联质谱法测定复杂基质食品中二硝基苯胺类除草剂残留量[J]. 分析测试学报, 2017, 36(4): 550-554. doi: 10.3969/j.issn.1004-4957.2017.04.019

    ZHANG J Y, YUE Z F, CAI Y N, et al. Simultaneous determination of dinitroaniline herbicides in complex matrix by ultra performance liquid chromatography-tandem mass spectrometry[J]. J Instrum Anal, 2017, 36(4): 550-554. doi: 10.3969/j.issn.1004-4957.2017.04.019
    [8] ANTHONY R G, HUSSEY P J. Dinitroaniline herbicide resistance and the microtubule cytoskeleton[J]. Trends Plant Sci, 1999, 4(3): 112-116. doi: 10.1016/S1360-1385(99)01378-3
    [9] YANG L H, SONG X X, ZHOU X G, et al. Residual behavior and risk assessment of butralin in peanut fields[J]. Environ Monit Assess, 2020, 192(62): 1-14.
    [10] LEE J M, PARK J W, JANG G C, et al. Comparative study of pesticide multi-residue extraction in tobacco for gas chromatography-triple quadrupole mass spectrometry[J]. J Chromatogr A, 2008, 1187(1-2): 25-33. doi: 10.1016/j.chroma.2008.02.035
    [11] CRESCENZI C, D'ASCENZO G, CORCIA A D, et al. Multiresidue herbicide analysis in soil: subcritical water extraction with an on-line sorbent trap[J]. Anal Chem, 1999, 71(11): 2157-2163. doi: 10.1021/ac9811322
    [12] LI C D, LIU R, LI L, et al. Dissipation behavior and risk assessment of butralin in soybean and soil under field conditions[J]. Environ Monit Assess, 2017, 189(9): 476. doi: 10.1007/s10661-017-6185-y
    [13] YANG X, ZHANG H, LIU Y, et al. Multiresidue method for determination of 88 pesticides in berry fruits using solid-phase extraction and gas chromatography-mass spectrometry: determination of 88 pesticides in berries using SPE and GC-MS[J]. Food Chem, 2011, 127(2): 855-865. doi: 10.1016/j.foodchem.2011.01.024
    [14] 谷岩, 梁爽, 侯志广, 等. 液相色谱法测定苄嘧磺隆和仲丁灵在水稻中的贮存稳定性[J]. 植物保护, 2016, 42(1): 154-158. doi: 10.3969/j.issn.0529-1542.2016.01.028

    GU Y, LIANG S, HOU Z G, et al. Storage stability of bensulfuron-methyl and butralin in rice samples using HPLC[J]. Plant Prot, 2016, 42(1): 154-158. doi: 10.3969/j.issn.0529-1542.2016.01.028
    [15] 刘芳. 气相色谱法测定西瓜中仲丁灵的残留量[J]. 农药科学与管理, 2016, 37(3): 48-51. doi: 10.3969/j.issn.1002-5480.2016.03.009

    LIU F. Determination of butralin residue in watermelon by GC-μECD[J]. Pestic Sci Admin, 2016, 37(3): 48-51. doi: 10.3969/j.issn.1002-5480.2016.03.009
    [16] LIAO Q G, ZHOU Y M, LUO L G, et al. Determination of twelve herbicides in tobacco by a combination of solid-liquid-solid dispersive extraction using multi-walled carbon nanotubes, dispersive liquid-liquid micro-extraction, and detection by GC with triple quadrupole mass spectrometry[J]. Microchimica Acta, 2014, 181(1-2): 163-169. doi: 10.1007/s00604-013-1086-4
    [17] 马绍鋆. 仲丁灵在农业生产中的应用及研究进展[J]. 安徽农学通报, 2016, 22(22): 74-76+107. doi: 10.3969/j.issn.1007-7731.2016.22.033

    MA S J. The progress of butralin application research in agricultural production[J]. Anhui Agri Sci Bull, 2016, 22(22): 74-76+107. doi: 10.3969/j.issn.1007-7731.2016.22.033
    [18] 曾维爱, 谢鹏飞, 蔡海林, 等. 多壁碳纳米管固相萃取/液相色谱-串联质谱测定鲜烟叶中二甲戊灵、仲丁灵、氟节胺残留量[J]. 农药, 2020, 59(10): 754-757.

    ZENG W A, XIE P F, CAI H L, et al. Determination of pendimethalin, butralin, and flumetralin in fresh tobacco leaves by HPLC-MS/MS with multi-walled carbon nanotubes solid-phase extraction[J]. Agrochemicals, 2020, 59(10): 754-757.
    [19] 食品安全国家标准 食品中农药最大残留限量: GB 2763—2019[S]. 北京: 中华人民共和国国家健康卫生委员会, 2019.

    National food safety standard-Maximum residue limits of pesticides in food: GB 2763—2019[S]. Beijing: National Health Commission of the People's Republic of China, 2019.
    [20] 农业农村部农药检定所. 农药残留物手册[M]. 北京: 中国农业出版社, 2018: 167-168.

    Pesticide Inspection Institute of the Ministry of Agriculture and Rural Affairs. Manual on pesticide residue definition[M]. Beijing: Chinese Agriculture Press, 2018: 167-168.
    [21] SU R, LI D, WANG X H, et al. Determination of organophosphorus pesticides in ginseng by carbon nanotube envelope-based solvent extraction combined with ultrahigh-performance liquid chromatography mass spectrometry[J]. J Chromatogr B, 2016, 1022: 141-152. doi: 10.1016/j.jchromb.2016.04.018
    [22] CHEN L N, YIN L H, SONG F G, et al. Determination of pesticide residues in ginseng by dispersive liquid–liquid microextraction and ultra high performance liquid chromatography–tandem mass spectrometry[J]. J Chromatogr B, 2013, 917-918: 71-77. doi: 10.1016/j.jchromb.2012.12.034
    [23] 农作物中农药残留试验准则: NY/T 788—2018[S]. 北京: 中国标准出版社, 2018.

    Guideline for the testing of pesticide residue in crops: NY/T 788—2018[S]. Beijing: Standards Press of China, 2018.
    [24] 地理标志产品 吉林长白山人参: GB/T 19506—2009[S]. 北京: 中国国家标准化管理委员会, 2009.

    Geographical indication product-Jilin Changbai Mountain ginseng: GB/T 19506—2009[S]. Beijing: China National Standardization Management Committee, 2009.
    [25] 丁明, 钟冬莲, 汤富彬, 等. 固相萃取/液质联用测定竹笋中丁烯氟虫腈农药残留研究[J]. 分析测试学报, 2013, 32(3): 372-376. doi: 10.3969/j.issn.1004-4957.2013.03.019

    DING M, ZHONG D L, TANG F. B, et al Determination of butylene fipronil residue in bamboo shoots by liquid chromatography-tandem mass spectrometry[J]. J Instrum Anal, 2013, 32(3): 372-376. doi: 10.3969/j.issn.1004-4957.2013.03.019
    [26] 黄宝勇, 欧阳喜辉, 潘灿平. 色谱法测定农产品中农药残留时的基质效应[J]. 农药学学报, 2005, 7(4): 299-305. doi: 10.3321/j.issn:1008-7303.2005.04.002

    HUANG B Y, OUYANG X H, PAN C P. Matrix effects in the analysis of pesticide residue in agro-products by chromatographic methods[J]. Chin J Pestic Sci, 2005, 7(4): 299-305. doi: 10.3321/j.issn:1008-7303.2005.04.002
    [27] GUEDES J A, SILVA RDE O, LIMA C G, et al. Matrix effect in guava multiresidue analysis by QuEChERS method and gas chromatography coupled to quadrupole mass spectrometry[J]. Food Chem, 2016, 199: 380-386. doi: 10.1016/j.foodchem.2015.12.007
    [28] HE Z, WANG L, PENG Y, et al. Multiresidue analysis of over 200 pesticides in cereals using a QuEChERS and gas chromatography-tandem mass spectrometry-based method[J]. Food Chem, 2015, 169: 372-380. doi: 10.1016/j.foodchem.2014.07.102
    [29] 徐月明, 张纪利, 郭明程, 等. 仲丁灵在土壤中的消解动态研究[J]. 现代农药, 2012, 11(3): 33-36. doi: 10.3969/j.issn.1671-5284.2012.03.010

    XU Y M, ZHANG J L, GUO M C, et al. Degradation dynamics of butralin in soil[J]. Mod Agrochem, 2012, 11(3): 33-36. doi: 10.3969/j.issn.1671-5284.2012.03.010
    [30] 李义强, 相振波, 徐光军, 等. 抑芽剂残留在烟草种植、储存和燃吸过程的降解与风险评价[J]. 中国烟草科学, 2017, 38(6): 28-33.

    LI Y Q, XIANG Z B, XU G J, et al. Degradable characterization and risk assessment of suckercides residues in tobacco leaves[J]. Chin Tob Sci, 2017, 38(6): 28-33.
    [31] 石利利, 单正军, 蔡道基. 三唑磷农药在土壤中的降解与吸附特性研究[J]. 农业环境科学学报, 2006, 25(3): 733-736. doi: 10.3321/j.issn:1672-2043.2006.03.037

    SHI L L, SHAN Z J, CAI D J. Degradation and adsorption characteristics of triazophos in soils[J]. J Agro-Environ Sci, 2006, 25(3): 733-736. doi: 10.3321/j.issn:1672-2043.2006.03.037
  • 加载中
计量
  • 文章访问数:  24
  • HTML全文浏览量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-27
  • 录用日期:  2021-03-17
  • 网络出版日期:  2021-04-13

目录

    /

    返回文章
    返回