Feasibility of the plant protection unmanned aerial vehicle for controlling tobacco bollworm (Helicoverpa armigera) and the effect of adjuvant Beidatong
-
摘要: 为明确采用植保无人飞机施药方式防治烟草病虫害的可行性,对比分析了采用多旋翼植保无人飞机与背负式电动喷雾器喷施5%甲氨基阿维菌素苯甲酸盐水分散粒剂(WG)防治烟草棉铃虫Helicoverpa armigera的田间效果和添加助剂倍达通对多旋翼植保无人飞机喷施药剂对棉铃虫的田间防治效果的影响。结果表明:采用植保无人飞机喷施5%甲基阿维菌素苯甲酸盐WG对棉铃虫的防治效果随着施药后时间的延长逐渐增加。施药后7 d,制剂用量为60、75和90 g/hm2的防治效果分别为71.31%、64.00%和93.93%。在制剂用量为75 g/hm2下,添加10 mL/L的助剂倍达通可使植保无人飞机作业对棉铃虫的防效从64.00%提高到92.59%,背负式电动喷雾器施药后7 d的防效为94.30%。研究结果表明,在相同施药剂量(75 g/hm2)下,采用背负式喷雾器喷施药剂对棉铃虫的防治效果好于采用多旋翼植保无人飞机。然而,通过添加10 mL/L的助剂倍达通或提高20%用药量,采用植保无人飞机施药可达到与采用背负式喷雾器施药相同的防治效果。该研究结果可为进一步提升植保无人飞机防治烟草病虫害的施药技术和加快植保无人飞机在烟草植保中的推广应用提供支撑和参考。Abstract: In order to evaluate the feasibility of the unmanned aerial vehicle (UAV) for tobacco protection against diseases and insects, the field control efficacy of 5% emamectin benzoate water-dispersible granules (WG) spraying by multi-rotor UAV and knapsack electric sprayer against tobacco bollworm (Helicoverpa armigera) were compared and the effect of adjuvant Beidatong on control efficacy was analyzed. The results showed that the control efficacy of 5% abamectin benzoate WG applied by UAV against H. armigera was gradually increased from 1 day to 7 days after application. Seven days after application, the control efficacies were 71.31%, 64.00%, and 93.93% at dosages 60, 75, and 90 g/hm2, respectively. However, the control efficacy of 5% abamectin benzoate WG applied by UAV could be improved from 64.00% to 92.59% at a dosage of 75 g/hm2 by the addition of 10 mL/L spray adjuvant. The control efficacy of application by knapsack electric sprayer was 94.30% at a dosage of 75 g/hm2. These results indicated that the knapsack electric sprayer has better control efficacy on H. armigera than the multi-rotor plant protection UAV at the same application dosage (75 g/hm2). UAV spraying could achieve a similar efficacy as the knapsack sprayer by the addition of 10 mL/L adjuvant Beidatong or a 20% dosage increase. The research results provide support and reference for further improving the application technology of UAVs to control tobacco pests and speeding up the promoted application of UAVs in tobacco plant protection.
-
图 3 不同处理的烟草植株破叶率对比
注:处理1表示采用植保无人飞机喷施60 g/hm2的药剂;处理2表示植保无人飞机喷施75 g/hm2的药剂 ,处理3表示植保无人飞机喷施 75 g/hm2的药剂和倍达通 10 mL/L;处理4表示植保无人飞机喷施90 g/hm2的药剂;处理5表示背负式电动喷雾器喷施75 g/hm2的药剂。图中数据为平均值,不同小写字母表示各处理间的差异显著性(P < 0.05)。
Figure 3. The comparison of rates of broken leaves in tobacco with different treatments
Note: Treatment 1 means that the UAV is used to spray 60 g/hm2 of chemicals; Treatment 2 means that UAV is used to spray 75 g/hm2 of pesticide; Treatment 3 means that the UAV is used to spray 75 g/hm2 of pesticide and 10 mL/L of Beidatong. Treatment 4 means that the UAV sprays 90 g/hm2 of pesticide; Treatment 5 means that the knapsack electric sprayer sprays 75 g/hm2 of pesticide. The data in the figure are the mean value, and different lowercase letters indicate significant differences between treatments (P < 0.05).
图 4 不同处理的虫株率的变化
注:处理1表示采用植保无人飞机喷施60 g/hm2的药剂;处理2表示植保无人飞机喷施75 g/hm2的药剂 ,处理3表示植保无人飞机喷施 75 g/hm2的药剂和倍达通 10 mL/L;处理4表示植保无人飞机喷施90 g/hm2的药剂;处理5表示背负式电动喷雾器喷施75 g/hm2的药剂。图中数据为平均值,不同小写字母表示各处理间的差异显著性(P < 0.05)。
Figure 4. The insect strain rates with different treatments
Note: Treatment 1 means that the UAV is used to spray 60 g/hm2 of chemicals; Treatment 2 means that UAV is used to spray 75 g/hm2 of pesticide; Treatment 3 means that the UAV is used to spray 75 g/hm2 of pesticide and 10 mL/L of Beidatong. Treatment 4 means that the UAV sprays 90 g/hm2 of pesticide; Treatment 5 means that the knapsack electric sprayer sprays 75 g/hm2 of pesticide. The data in the figure are the mean value, and different lowercase letters indicate significant differences between treatments (P < 0.05).
图 5 两种植保器械对烟草棉铃虫防效的比较
注:处理1表示采用植保无人飞机喷施60 g/hm2的药剂;处理2表示植保无人飞机喷施75 g/hm2的药剂,处理3表示植保无人飞机喷施 75 g/hm2的药剂和倍达通 10 mL/L;处理4表示植保无人飞机喷施90 g/hm2的药剂;处理5表示背负式电动喷雾器喷施75 g/hm2的药剂。图中数据为平均值,不同小写字母表示各处理间的差异显著性(P < 0.05)。
Figure 5. The comparison of control efficacy of two plant protection instruments on tobacco H. armigera
Note: Treatment 1 means that the UAV is used to spray 60 g/hm2 of chemicals; Treatment 2 means that UAV is used to spray 75 g/hm2 of pesticide; Treatment 3 means that the UAV is used to spray 75 g/hm2 of pesticide and 10 mL/L of Beidatong. Treatment 4 means that the UAV sprays 90 g/hm2 of pesticide; Treatment 5 means that the knapsack electric sprayer sprays75 g/hm2 of pesticide. The data in the figure are the mean value, and different lowercase letters indicate significant differences between treatments (P < 0.05).
表 1 5%甲氨基阿维菌素苯甲酸盐WG防治烟草棉铃虫药效试验处理设计
Table 1. Treatments of the control efficacy experiments of emamectin benzoate 50 g/kg WG against H. armigera
处理
Treatment施药器械
Instrument制剂剂量Dose/(g/hm2) 助剂(倍达通)Adjuvant
(Beidatong)/(mL/L)风速Wind speed/
(m/s)温度/湿度Temperature/
Humidity处理面积Processing
area/hm21 植保无人飞机(大疆 T20)
UAV (DJI-T20)60 0 3.10 22 ℃/72% 0.30 2 75 0 1.34 23 ℃/70% 0.26 3 75 10 2.10 26 ℃/69% 0.29 4 90 0 2.81 27 ℃/69% 0.26 5 3WBD-20 背负式电动喷雾器
3WBD-20 knapsack electric sprayer75 0 4.05 30 ℃/68% 0.02 CK 0.36 -
[1] 刘林州, 李建华, 陈会杰, 等. 许昌烟草病虫害发生情况及防治对策[J]. 安徽农业科学, 2019, 47(5): 157-158,. doi: 10.3969/j.issn.0517-6611.2019.05.043LIU L Z, LI J H, CHEN H J, et al. Occurrence and control strategies of tobacco pests and diseases damage in Xuchang[J]. J Anhui Agric Sci, 2019, 47(5): 157-158,. doi: 10.3969/j.issn.0517-6611.2019.05.043 [2] 陈瑞泰, 朱贤朝, 王智发, 等. 全国16个主产烟省(区)烟草侵染性病害调研报告[J]. 中国烟草科学, 1997, 18(4): 1-7.CHEN R T, ZHU X C, WANG Z F, et al. A report of investigating and studying tobacco infectious diseases of 16 main tobacco producing provinces (regions) in China[J]. Chin Tob Sci, 1997, 18(4): 1-7. [3] 杨绍俊, 彭坚强, 肖志新, 等. 保山植烟区“三虫三病”发生规律动态调查[J]. 热带农业科学, 2017, 37(3): 47-51.YANG S J, PENG J Q, XIAO Z X, et al. Survey of dynamic occurrence of “three insects, three diseases” in tobacco producing areas of Baoshan, Yunnan[J]. Chin J Trop Agric, 2017, 37(3): 47-51. [4] 闫晓静, 褚世海, 杨代斌, 等. 给农业插上科技的翅膀: 植保无人机低容量喷雾技术助力农药减施增效[J]. 植物保护学报, 2021, 48(3): 469-476.YAN X J, CHU S H, YANG D B, et al. Agriculture on the wings of science and technology: plant protection unmanned aerial vehicle (UAV) low-volume spraying technology reduces pesticide use and boosts control efficacy[J]. J Plant Prot, 2021, 48(3): 469-476. [5] 陈金, 刘品超, 黄国强, 等. 基于无人机遥感的烟田监测技术应用现状[J]. 现代农业科技, 2018(4): 211-212.CHEN J, LIU P C, HUANG G Q, et al. Application status of monitoring technology of tobacco field based on UAV remote sensing[J]. Mod Agric Sci Technol, 2018(4): 211-212. [6] 孟秀军, 谷连军, 王森. 无人机遥感在烟田监测中的应用: 以湖南省宁乡县黄材镇烟田监测为例[J]. 北京测绘, 2018, 32(10): 1169-1173.MENG X J, GU L J, WANG S. Research on application of UAV RS techniques in the tobacco monitoring: Huangcai town in Ningxiang Country, Hunan Province tobacco monitoring as an example[J]. Beijing Surv Mapp, 2018, 32(10): 1169-1173. [7] 农药田间药效试验准则(一)杀虫剂防治棉铃虫: GB/T 17980.1—2000[S]. 北京: 中国标准出版社, 2000.Pesticide-Guidelines for the field efficacy trials (Ⅰ). Insecticides against borer pests of Lepidoptera on rice: GB/T 17980.1—2000[S]. Beijing: China Standard Press, 2000. [8] 郭梅燕, 陈玉国, 王雪芬, 等. 生物农药在烟田烟青虫/棉铃虫防治中的应用效果[J]. 烟草科技, 2020, 53(7): 19-25.GUO M Y, CHEN Y G, WANG X F, et al. Application of biopesticides on Helicoverpa assulta and Helicoverpa armigera in tobacco fields[J]. Tob Sci Technol, 2020, 53(7): 19-25. [9] 商艳兰. 小麦主要害虫发生规律与无人机施药防治效果研究[D]. 泰安: 山东农业大学, 2016.SHANG Y L. Study on occurrence regularity of main insect pests on wheat and control effectiveness by using unmanned helicopter[D]. Taian: Shandong Agricultural University, 2016. [10] 焦雨轩, 薛新宇, 丁素明, 等. 不同植保机械施药对棉蚜防效的影响[J]. 农机化研究, 2022, 44(3): 159-164.JIAO Y X, XUE X Y, DING S M, et al. Effects of different plant protection machinery on aphid control[J]. J Agric Mech Res, 2022, 44(3): 159-164. [11] 伏荣桃, 陈诚, 王剑, 等. 植保无人机对水稻病虫害防治条件与防效的研究[J]. 中国农业科技导报, 2021, 23(4): 103-109.FU R T, CHEN C, WANG J, et al. Control conditions and effects of plant protection unmanned aerial vehicle (UAV) on diseases and insect pests of rice[J]. J Agric Sci Technol, 2021, 23(4): 103-109. [12] 郭华伟, 姚惠明, 唐美君, 等. 植保无人机喷施虫螨腈防治茶小绿叶蝉效果评价[J]. 中国茶叶, 2021, 43(4): 41-44. doi: 10.3969/j.issn.1000-3150.2021.04.010GUO H W, YAO H M, TANG M J, et al. Evaluation of the effect of chlorfenapyr sprayed by plant protection UAV on Empoasca onukii Matsuda[J]. China Tea, 2021, 43(4): 41-44. doi: 10.3969/j.issn.1000-3150.2021.04.010 [13] 荀栋, 张兢, 何可佳, 等. TH80-1植保无人机施药对水稻主要病虫害的防治效果研究[J]. 湖南农业科学, 2015(8): 39-42.XUN D, ZHANG J, HE K J, et al. Control efficacies of TH80-1 plant protection UAV spraying method on main diseases and insect pests of rice[J]. Hunan Agric Sci, 2015(8): 39-42. [14] QIN W C, QIU B J, XUE X Y, et al. Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers[J]. Crop Prot, 2016, 85: 79-88. doi: 10.1016/j.cropro.2016.03.018 [15] 薛新宇, 秦维彩, 孙竹, 等. N-3型无人直升机施药方式对稻飞虱和稻纵卷叶螟防治效果的影响[J]. 植物保护学报, 2013, 40(3): 273-278.XUE X Y, QIN W C, SUN Z, et al. Effects of N-3 UAV spraying methods on the efficiency of insecticides against planthoppers and Cnaphalocrocis medinalis[J]. Acta Phytophylacica Sinica, 2013, 40(3): 273-278. [16] PUNYAWATTOE P, SUTJARITTHAMMAJARIYANGKUN W, THIRAWUT S, et al. Efficacy of the FAZER helicopter unmanned aerial vehicle (UAV) in controlling rice leaf folder and dirty panicle disease in paddy fields[J]. Inter J Agric Technol, 2021, 17(4): 1561-1568. [17] 卢小平, 肖冬芽, 甘贱根, 等. 4种施药器械对水稻基部病虫害的防效比较及经济效益分析[J]. 江西农业学报, 2018, 30(5): 61-64.LU X P, XIAO D Y, GAN J G, et al. Control effect comparison and economic benefit analysis of using four kinds of spray equipments to control rice stem-base diseases and insect pests[J]. Acta Agric Jiangxi, 2018, 30(5): 61-64. [18] 高圆圆, 张玉涛, 张宁, 等. 小型无人机低空喷洒在小麦田的雾滴沉积分布及对小麦吸浆虫的防治效果初探[J]. 作物杂志, 2013(2): 139-142.GAO Y Y, ZHANG Y T, ZHANG N, et al. Primary studies on spray droplets distribution and control effects of aerial spraying using unmanned aerial vehicle (UAV) against wheat midge[J]. Crops, 2013(2): 139-142. [19] 蒙艳华, 兰玉彬, 李继宇, 等. 单旋翼油动植保无人机防治小麦蚜虫参数优选[J]. 中国植保导刊, 2017, 37(12): 66-71.MENG Y H, LAN Y B, LI J Y, et al. Optimization of operation parameters of single-rotor gas-powered UAV for controlling wheat aphid[J]. China Plant Prot, 2017, 37(12): 66-71. [20] 张龙, 陈树茂, 马金龙, 等. 多旋翼植保无人机在小麦田的雾滴分布及对小麦蚜虫的防治效果初探[J]. 农药科学与管理, 2018, 39(2): 46-52.ZHANG L, CHEN S M, MA J L, et al. Study on droplet distribution of multi rotor unmanned aerial vehicle (UAV) in wheat field and its control effect against wheat aphid[J]. Pestic Sci Adm, 2018, 39(2): 46-52. [21] 丁新华, 王娜, 王小武, 等. 小型无人机超低量喷雾防治玉米螟田间药效评价[J]. 新疆农业科学, 2017, 54(3): 479-488. doi: 10.6048/j.issn.1001-4330.2017.03.012DING X H, WANG N, WANG X W, et al. Studies on the control effect of ultra-low volume aerial spray using unmanned aerial vehicle (UAV) against the corn borer[J]. Xinjiang Agric Sci, 2017, 54(3): 479-488. doi: 10.6048/j.issn.1001-4330.2017.03.012 [22] 邵统响, 夏中卫, 魏颖, 等. 无人机防治鲜食玉米灌浆期病虫害效果初探[J]. 现代农药, 2018, 17(2): 51-53. doi: 10.3969/j.issn.1671-5284.2018.02.015SHAO T X, XIA Z W, WEI Y, et al. Primary study on the control effects of spraying by unmanned aerial vehicle against maize diseases and pests[J]. Mod Agrochem, 2018, 17(2): 51-53. doi: 10.3969/j.issn.1671-5284.2018.02.015 [23] 沙帅帅, 王喆, 肖海兵, 等. P20植保无人机作业参数优化及其施药对棉蚜防效评价[J]. 中国棉花, 2018, 45(1): 6-8. doi: 10.11963/1000-632X.ssswl.20171211SHA S S, WANG Z, XIAO H B, et al. Optimizing operation parameters of an unmanned aerial vehicle P20 and its application effects for spaying insecticides to control cotton aphid[J]. China Cotton, 2018, 45(1): 6-8. doi: 10.11963/1000-632X.ssswl.20171211 -