Residue and chronic dietary risk assessment of penthiopyrad, trifloxystrobin and their metabolites in tomato by QuEChERS-high performance liquid chromatography-tandem mass spectrometry
-
摘要: 建立了吡噻菌胺及其主要代谢物1-甲基-3- (三氟甲基)-1H-吡唑-4-甲酰胺 (PAM)和肟菌酯及其代谢物肟菌酸在番茄中残留的分析方法。样品经乙酸-乙腈提取,无水硫酸镁、N-丙基乙二胺 (PSA)和石墨化碳黑 (GCB)净化,高效液相色谱-串联质谱 (HPLC-MS/MS)检测。结果表明:吡噻菌胺、PAM、肟菌酯和肟菌酸在0.025~2 mg/L范围内的线性关系良好,R2≥0.999 2。在不同添加水平下,4种化合物在番茄中的平均回收率在88%~97%之间,相对标准偏差 (RSD)小于3.9%,定量限 (LOQ)均为0.05 mg/kg。按照《农作物中农药残留试验准则》在全国12个地区开展规范残留试验,30%吡噻菌胺 • 肟菌酯悬浮剂以推荐剂量有效成分270 g/hm2,于番茄灰霉病发生初期喷雾施药2次,施药间隔7 d (推荐的安全间隔期为5 d)。在分别于末次施药后5和7 d采集的番茄样品中,吡噻菌胺的残留量均低于0.26 mg/kg,肟菌酯的均低于0.33 mg/kg,均未超出中国制定的吡噻菌胺和肟菌酯在番茄中的最大残留限量 (MRL)值。根据田间残留试验结果、膳食结构和毒理学数据进行了长期膳食风险评估。结果表明:普通人群吡噻菌胺和肟菌酯国家估算每日摄入量 (NEDI)分别为0.1382和0.2645 mg,膳食风险商 (RQ)均小于100%,说明在推荐的良好农业规范 (GAP)条件下施用30%吡噻菌胺 • 肟菌酯悬浮剂不会对人体健康产生不可接受的风险。Abstract: A method was established for the simultaneous determination of penthiopyrad, its main metabolite 1-methyl-3-trifluoromethyl-1H-pyrazole-4-carboxamide (PAM), trifloxystrobin and its metabolite trifloxystrobin acid in tomato. The samples were extracted with acetic acid and acetonitrile, cleaned-up with anhydrous MgSO4, primary secondary amine (PSA) and GCB, and detected by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The linearities of penthiopyrad, PAM, trifloxystrobin and trifloxystrobin acid ranged from 0.025 to 2 mg/L, with R2≥ 0.9992. The average recoveries of the four compounds in tomato at different spiked levels were 88%-97%, with the relative standard deviations (RSD) less than 3.9%. The limits of quantification (LOQs) of the analytes were all 0.05 mg/kg. The supervised residue trials were carried out in 12 farm regions in China according to "Guideline for the Testing of Pesticide Residues in Crops". The 30% suspension concentrate of penthiopyrad and trifloxystrobin was sprayed twice with an interval of 7 days at the recommended dosage of 270 g a.i./hm2 at the early stage of Botrytis cinerea in tomato, and the recommended pre-harvest interval was 5 days. On the 5th and 7th day after the last application, the residues of penthiopyrad in tomato samples were below 0.26 mg/kg, and the residues of trifloxystrobin were below 0.33 mg/kg, which were lower than the corresponding MRLs set in China. The dietary risk assessment was carried out according to the results of residue field trials, dietary structure and toxicological data. The results showed that the national estimated daily intake (NEDI) of penthiopyrad and trifloxystrobin were 0.1382 mg and 0.2645 mg, respectively. The dietary risk quotient (RQ) of penthiopyrad and trifloxystrobin in tomato were less than 100%, which indicated that the application of the 30% suspension concentrate of penthiopyrad and trifloxystrobin under recommended Good Agricultural Practice (GAP) conditions would not pose an unacceptable risk to human health.
-
表 1 吡噻菌胺、PAM、肟菌酯和肟菌酸质谱检测条件
Table 1. Mass spectrometry parameters for penthiopyrad, PAM, trifloxystrobin and trifloxystrobin acid
化合物
Compound保留时间
Retention time/min定量离子
Quantitative ion定性离子
Qualitative ion碎裂电压
Cone voltage/V碰撞能量
Collision energy/eV吡噻菌胺 penthiopyrad 1.22 360.1→276 360.1→177
360.1→27655 276/12 177/40 PAM 0.59 194→134 194→174
194→13440 134/20 174/6 肟菌酯 trifloxystrobin 1.63 409→186 409→206
409→18676 186/15 206/10 肟菌酸 trifloxystrobin acid 1.01 395→186 395→148
395→186114 186/10 148/10 表 2 吡噻菌胺、PAM、肟菌酯和肟菌酸在番茄中的平均添加回收率和相对标准偏差
Table 2. The average recoveries and RSDs of penthiopyrad, PAM, trifloxystrobin and trifloxystrobin acid in tomato
化合物
Compound添加水平Spiked level/
(mg/kg)平均回收率Average recovery/
%相对标准偏差
RSD/%吡噻菌胺
penthiopyrad0.05 97 3.4 0.7 90 2.7 2 89 3.7 PAM 0.05 95 1.7 0.7 92 3.2 2 88 3.5 肟菌酯
trifloxystrobin0.05 95 3.8 0.3 90 2.6 0.7 90 3.9 肟菌酸
trifloxystrobin acid0.05 94 3.6 0.4 91 2.9 0.7 89 3.6 表 3 吡噻菌胺、PAM、肟菌酯和肟菌酸在番茄中的线性方程、定量限、检出限及基质效应
Table 3. Linear equations, LOQ, LOD and matrix effects of penthiopyrad, PAM, trifloxystrobin and trifloxystrobin acid in tomato
化合物
Compound线性方程
Linear equationR2 定量限
LOQ/(mg/kg)检出限
LOD/(μg/kg)基质效应
Me/%吡噻菌胺 penthiopyrad 基质 Matrix y = 96909x + 529.85 0.9999 0.05 0.105 −26 溶剂 Solvent y = 130958x + 682.05 0.0998 PAM 基质 Matrix y = 10703x + 38.251 1.0000 0.05 0.060 −24 溶剂 Solvent y = 14082x + 59.53 0.0999 肟菌酯 trifloxystrobin 基质 Matrix y = 221053x + 5059 0.9992 0.05 0.006 −18 溶剂 Solvent y = 269576x + 7263 0.0994 肟菌酸 trifloxystrobin acid 基质 Matrix y = 94378x + 272.03 0.9997 0.05 0.004 −20 溶剂 Solvent y = 117972x + 493.97 0.0998 表 4 吡噻菌胺、肟菌酯、吡噻菌胺 (总量) 和肟菌酯 (总量) 在12个试验点番茄样品中的最终残留量 (n = 2)
Table 4. Terminal residues of penthiopyrad, total penthiopyrad (sum of penthiopyrad and PAM), trifloxystrobin and total trifloxystrobin (sum of trifloxystrobin and trifloxystrobin acid) in tomato samples from 12 test sites (n = 2)
化合物
Compound采收间隔期
Harvest interval/d最终残留量
Terminal residue/(mg/kg)残留试验中值
STMR/(mg/kg)最高残留量
HR/(mg/kg)吡噻菌胺
penthiopyrad5 < 0.05 (14),0.055,0.060,0.067,0.069,0.070,
0.072,0.099,0.13 (2),0.160.05 0.16 7 < 0.05 (18),0.063,0.078 (2),0.086,0.10, 0.26 0.05 0.26 吡噻菌胺 (总量)
total penthiopyrad5 < 0.1 (14),0.11(2),0.12 (4),0.15,0.18 (2),0.21 0.10 0.21 7 < 0.1 (18),0.11,0.13 (2),0.14,0.15,0.31 0.10 0.31 肟菌酯
trifloxystrobin5 < 0.05 (20),0.060,0.080,0.11,0.13 0.05 0.13 7 < 0.05 (22),0.078,0.33 0.05 0.33 肟菌酯 (总量)
total trifloxystrobin5 < 0.1 (20),0.11,0.13,0.16,0.18 0.10 0.18 7 < 0.1 (22),0.13,0.38 0.10 0.38 表 5 吡噻菌胺、肟菌酯、吡噻菌胺 (总量) 和肟菌酯(总量) 在4个试验点番茄样品中的残留消解动态 (n = 2)
Table 5. Dissipation of penthiopyrad, total penthiopyrad (sum of penthiopyrad and PAM), trifloxystrobin and total trifloxystrobin (sum of trifloxystrobin and trifloxystrobin acid) in tomato (n = 2)
化合物
Compound采收间隔期
Harvest interval/d残留量 Residue/(mg/kg) 北京
Beijing City宁夏银川Yinchuan City of
Ningxia Hui Autonomous Region山东济南Jinan City of
Shandong Province贵州贵阳Guiyang City of
Guizhou Province吡噻菌胺 penthiopyrad 0 0.12 1.0 0.16 0.47 1 0.13 0.70 0.074 0.17 3 0.054 <0.05 0.051 0.16 5 <0.05 <0.05 0.065 0.11 7 <0.05 <0.05 <0.05 0.17 10 <0.05 <0.05 <0.05 0.053 吡噻菌胺 (总量) total penthiopyrad 0 0.13 1.1 0.21 0.52 1 0.054 0.75 0.13 0.22 3 0.11 <0.1 0.10 0.21 5 <0.1 <0.1 0.12 0.17 7 <0.1 <0.1 <0.1 0.22 10 <0.1 <0.1 <0.1 0.11 肟菌酯 trifloxystrobin 0 0.062 0.076 0.14 0.26 1 0.080 0.05 <0.05 0.15 3 <0.05 <0.05 <0.05 0.15 5 <0.05 <0.05 <0.05 0.12 7 <0.05 <0.05 <0.05 0.20 10 <0.05 <0.05 <0.05 0.054 肟菌酯 (总量) total trifloxystrobin 0 0.12 0.13 0.19 0.31 1 0.13 0.10 <0.1 0.20 3 <0.1 <0.1 <0.1 0.20 5 <0.1 <0.1 <0.1 0.17 7 <0.1 <0.1 <0.1 0.26 10 <0.1 <0.1 <0.1 0.1 表 6 吡噻菌胺和肟菌酯的膳食风险评估
Table 6. Dietary risk assessment of penthiopyrad and trifloxystrobin
化合物
Compound登记作物Registration
crop食物种类Food
classification膳食量Dietary intake/
(kg/d)参考限量或残留试验中值Reference MRL
or STMR/(mg/kg)来源
Source国家估算每日摄入量
NEDI/mg风险商
RQ/%吡噻菌胺 penthiopyrad 番茄 Tomato 深色蔬菜 Dark-color vegetables 0.0915 0.10 残留中值 STMR 0.1382 2.2 黄瓜 Cucumber 浅色蔬菜 Light-color vegetables 0.1837 0.7 欧盟 European Union 葡萄 Grape 水果 Fruits 0.0457 0.01 欧盟 European Union 肟菌酯 trifloxystrobin 水稻 Rice 米及其制品 Rice and its products 0.2399 0.1 中国 China 0.2645 10.5 小麦 Wheat 面及其制品 Flour and its products 0.1385 0.2 中国 China 玉米 Corn 其它谷类 Other cereals 0.0233 0.02 中国 China 马铃薯 Potato 薯类 Tubers 0.0495 0.2 中国 China 番茄 Tomato 深色蔬菜 Dark-color vegetables 0.0915 0.1 残留中值 STMR 黄瓜 Cucumber 浅色蔬菜 Light-color vegetables 0.1837 0.3 中国 China 樱桃 Cherry 水果 Fruits 0.0457 3 中国 China 山核桃 Pecans 坚果 Nut 0.0039 0.02 中国 China 咖啡 Coffee 饮料类 Drink 0.0120 0.05 欧盟 European Union 人参 Ginseng 药用植物 Medicinal plant 0.0090 0.05 欧盟 European Union -
[1] 聂金泉. 不同杀菌剂对番茄灰霉病的防治效果分析[J/OL]. 南方农业, 2016, 10(18): 86, 88.NIE J Q. Analysis on the control effect of different fungicides on Botrytis cinerea in tomato[J/OL]. South China Agric, 2016, 10(18): 86, 88. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=NFNY201618053&dbname=CJFD&dbcode=CJFQ. [2] 张庆宽. 新颖杀菌剂: 吡噻菌胺[J/OL]. 世界农药, 2009, 31(3): 53.ZHANG Q K. Novel bactericide-penthiopyrad[J/OL]. World Pestic, 2009, 31(3): 53. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=NYSJ200903022&dbname=CJFD&dbcode=CJFQ. [3] 武鹏, 王琴, 张宏军. 20%吡噻菌胺悬浮剂的高效液相色谱分析[J/OL]. 农药科学与管理, 2019, 40(7): 47-49.WU P, WANG Q, ZHANG H J. Detection of 20% penthiopyrad SC by HPLC[J/OL]. Pestic Sci Admin, 2019, 40(7): 47-49. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=NYKG201907012&dbname=CJFD&dbcode=CJFQ. [4] QIAN L, QI S Z, CAO F J, et al. Effects of penthiopyrad on the development and behaviour of zebrafish in early-life stages[J/OL]. Chemosphere, 2019, 214: 184-194. https://www.sciencedirect.com/science/article/pii/S0045653518317739?via%3Dihub. [5] FAO. Report of the joint meeting of the FAO panel of experts on pesticide residues in food and the environment and the WHO core assessment group on pesticide residues[R], 2012. [6] 食品安全国家标准 食品中农药最大残留限量: GB 2763—2021[S/OL]. 北京: 中国标准出版社, 2021.National food safety standard—Maximum residue limits for pesticides in food. GB 2763—2021[S/OL]. Beijing: Standards Press of China, 2021. http://www.gb-gbt.cn/PDF.aspx/GB2763-2021. [7] 顾林玲. 肟菌酯的应用与开发进展[J/OL]. 现代农药, 2019, 18(1): 44-49.GU L L. Application and development progress of trifloxystrobin[J/OL]. Mod Agrochem, 2019, 18(1): 44-49. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=NYXD201901011&dbname=CJFD&dbcode=CJFQ. [8] WANG L, LI W M, LI P Y, et al. Residues and dissipation of trifloxystrobin and its metabolite in tomatoes and soil[J/OL]. Environ Monit Assess, 2014, 186(11): 7793-7799. https://link.springer.com/article/10.1007/s10661-014-3967-3. [9] 欧阳小庆, 吴迟, 王长宾, 等. 肟菌酯对环境生物急性毒性及安全性评价[J/OL]. 生态毒理学报, 2017, 12(4): 327-336.OUYANG X Q, WU C, WANG C B, et al. Acute toxicity and safety evaluation of trifloxystrobin to environmental organisms[J/OL]. Asian J Ecotoxicol, 2017, 12(4): 327-336. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=STDL201704037&dbname=CJFD&dbcode=CJFQ. [10] FAO. 2017 Joint FAO/WHO Meeting on Pesticide Residues in Food (JMPR)[R], 2017. [11] PIECHOWICZ B, SIEŃKO J, MYTYCH J, et al. Assessment of risk to honey bees and honey consumers resulting from the insect exposure to captan, thiacloprid, penthiopyrad, and λ-cyhalothrin used in a commercial apple orchard[J/OL]. Environ Monit Assess, 2021, 193(3): 1-15. https://link.springer.com/article/10.1007%2Fs10661-021-08913-6. [12] NOH H H, LEE J Y, PARK H K, et al. Dissipation, persistence, and risk assessment of fluxapyroxad and penthiopyrad residues in perilla leaf (Perilla frutescens var. japonica Hara)[J/OL]. PLoS One, 2019, 14(4): e0212209. https://pubmed.ncbi.nlm.nih.gov/30964876/. [13] LEEM S B, KIM J Y, HUR K J, et al. Establishment of pre-harvest residue limits and residue characteristics of penthiopyrad and pyriofenone in cucumber (Cucumis sativus L.) under greenhouse condition[J/OL]. Korean J Environ Agric, 2017, 36(1): 43-49. http://www.korseaj.org/selectArticleInfo.do?article_a_no=HGNHB8_2017_v36n1_43&ano=HGNHB8_2017_v36n1_43. [14] LIU Z, CHEN D, HAN J, et al. Stereoselective degradation behavior of the novel chiral antifungal agrochemical penthiopyrad in soil[J/OL]. Environ Res, 2021, 194: 110680. https://pubmed.ncbi.nlm.nih.gov/33385389/. [15] FENG Y Z, QI X X, WANG X Y, et al. Residue dissipation and dietary risk assessment of trifloxystrobin, trifloxystrobin acid, and tebuconazole in wheat under field conditions[J]. Int J Environ Anal Chem, 2020: 1-15. doi: 10.1080/03067319.2020.1739667 [16] KANG D, ZHANG H Z, CHEN Y L, et al. Simultaneous determination of difenoconazole, trifloxystrobin and its metabolite trifloxystrobin acid residues in watermelon under field conditions by GC-MS/MS[J]. Biomed Chromatogr, 2017, 31(11): e3987. doi: 10.1002/bmc.3987 [17] 张蕊, 邓露晴, 李祥英, 等. 液相色谱–质谱联用测定咖啡中肟菌酯及代谢物残留[J/OL]. 华南农业大学学报, 2019, 40(1): 72-76.ZHANG R, DENG L Q, LI X Y, et al. Determination of trifloxystrobin and its metabolite in coffee by liquid chromatography-mass spectrometry[J/OL]. J South China Agric Univ, 2019, 40(1): 72-76. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=HNNB201901012&dbname=CJFD&dbcode=CJFQ. [18] LUO X, QIN X, LIU Z, et al. Determination, residue and risk assessment of trifloxystrobin, trifloxystrobin acid and tebuconazole in Chinese rice consumption[J/OL]. Biomed Chromatogr, 2020, 34(1): e4694. https://pubmed.ncbi.nlm.nih.gov/31465553/. [19] CHEN X, XU J, LIU X, et al. Simultaneous determination of trifloxystrobin and trifloxystrobin acid residue in rice and soil by a modified quick, easy, cheap, effective, rugged, and safe method using ultra high performance liquid chromatography with tandem mass spectrometry[J/OL]. J Sep Sci, 2014, 37(13): 1640-1647. https://pubmed.ncbi.nlm.nih.gov/24737683/. [20] PARAMASIVAM M, SELVI C, DEEPA M, et al. Simultaneous determination of tebuconazole, trifloxystrobin, and its metabolite trifloxystrobin acid residues in gherkin under field conditions[J/OL]. J Sep Sci, 2015, 38(6): 958-964. https://pubmed.ncbi.nlm.nih.gov/25619713/. [21] PIECHOWICZ B, WOŚ I, PODBIELSKA M, et al. The transfer of active ingredients of insecticides and fungicides from an orchard to beehives[J/OL]. J Environ Sci Health B, 2018, 53(1): 18-24. https://pubmed.ncbi.nlm.nih.gov/29083963/. [22] SHIN Y, LEE J, LEE J, et al. Validation of a multiresidue analysis method for 379 pesticides in human serum using liquid chromatography-tandem mass spectrometry[J/OL]. J Agric Food Chem, 2018, 66(13): 3550-3560. https://pubmed.ncbi.nlm.nih.gov/29536730/. [23] 农作物中农药残留试验准则: NY/T 788—2018[S/OL]. 北京: 中国农业出版社, 2018.Guideline for the testing of pesticide residues in crops. NY/T 788—2018[S/OL]. Beijing: Chinese Agriculture Press, 2018. http://www.gb-gbt.cn/PDF.aspx/NYT788-2018. [24] 颜李秀, 黎良菊. 基质效应在农药残留检测中的影响[J/OL]. 乡村科技, 2020, 11(26): 108.YAN L X, LI L J. The influence of matrix effect in pesticide residue detection[J/OL]. Xiang Cun Ke Ji, 2020, 11(26): 108, 111. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=XCKJ202026053&dbname=CJFD&dbcode=CJFQ. [25] 中国农业科学院农业质量标准与检测技术研究所. 农产品质量安全风险评估——原理、方法和应用[M]. 北京: 中国标准出版社, 2007.Institute of Agricultural Quality Standards and Testing Technology, Chinese Academy of Agricultural Sciences. Agricultural product quality and safety risk assessment-principles, methods and applications[M]. Beijing: China Standard Press, 2007. -