• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

pH响应型毒死蜱水凝胶体系的构建及其缓释性能

查显艳 侯雪娟 南慧 田江

查显艳, 侯雪娟, 南慧, 田江. pH响应型毒死蜱水凝胶体系的构建及其缓释性能[J]. 农药学学报, 2022, 24(3): 520-529. doi: 10.16801/j.issn.1008-7303.2022.0003
引用本文: 查显艳, 侯雪娟, 南慧, 田江. pH响应型毒死蜱水凝胶体系的构建及其缓释性能[J]. 农药学学报, 2022, 24(3): 520-529. doi: 10.16801/j.issn.1008-7303.2022.0003
ZHA Xianyan, HOU Xuejuan, NAN Hui, TIAN Jiang. Construction of pH-responsive chlorpyrifos hydrogels system and its controlled-release property[J]. Chinese Journal of Pesticide Science, 2022, 24(3): 520-529. doi: 10.16801/j.issn.1008-7303.2022.0003
Citation: ZHA Xianyan, HOU Xuejuan, NAN Hui, TIAN Jiang. Construction of pH-responsive chlorpyrifos hydrogels system and its controlled-release property[J]. Chinese Journal of Pesticide Science, 2022, 24(3): 520-529. doi: 10.16801/j.issn.1008-7303.2022.0003

pH响应型毒死蜱水凝胶体系的构建及其缓释性能

doi: 10.16801/j.issn.1008-7303.2022.0003
基金项目: 湖湘高层次人才聚集工程创新人才 (2018RS3090).
详细信息
    作者简介:

    查显艳,zhaxy1@163.com

    通讯作者:

    田江,tianjiangjames23@xtu.edu.cn

  • 中图分类号: S481.9;TQ450.6

Construction of pH-responsive chlorpyrifos hydrogels system and its controlled-release property

Funds: Hunan High-level Talents Gather Engineering Innovation Talents (2018RS3090).
  • 摘要: 传统农药易受到环境因子的影响而过早降解,导致利用率低下,利用响应型控释技术对传统农药剂型进行改善是提高农药利用率的有效措施。本研究使用多巴胺改性凹凸棒负载毒死蜱 (CPF),将海藻酸盐作为包覆材料,利用外源挤出法与Ca2+ 交联,制备了能够对碱性条件作出特定响应的多巴胺改性凹凸棒/毒死蜱/海藻酸钙复合水凝胶 (PRCH)。通过扫描电镜 (SEM)、ζ-电位和比表面积测试 (BET) 对PRCH的形貌和结构进行表征,并研究PRCH在不同pH环境介质中的缓释性能、溶胀性能以及在紫外光和不同温度下的稳定性。结果表明:PRCH对毒死蜱的负载率高达85%,并能够在碱性条件下吸水溶胀,导致海藻酸钙孔道打开甚至结构坍塌,从而释放出毒死蜱。利用Korsmeyer-Peppas模型方程拟合曲线阐释PRCH的缓释机理为:在pH = 5.5的缓冲液中,毒死蜱的释药速率由药物的扩散和水凝胶溶胀共同决定;pH = 7.0时农药传输过程由水凝胶裂解的速率主导;而pH = 8.5时农药自身的扩散在毒死蜱的释放过程中起主要作用,但水凝胶的裂解加速了毒死蜱的扩散。PRCH比毒死蜱标准品拥有更强的紫外稳定性和温度稳定性。本研究表明,PRCH具备优异的载药性能、pH特定响应和绿色环保等优势,在提高传统农药施用稳定性和防治效果等方面具有良好的应用前景。
  • 图  1  海藻酸钙水凝胶在不同pH值的缓冲溶液中分子链变化示意图

    Figure  1.  Schematic diagram of molecular chain changes of calcium alginate hydrogels in buffer solutions with different pH values

    图  2  海藻酸钙复合水凝胶制备流程图

    Figure  2.  Schematic diagram of the preparation process of calcium alginate composite hydrogels

    图  3  经酸化 (HCl-ATP) 和未经酸化的凹凸棒 (ATP) 对20 g/L毒死蜱的负载能力

    Figure  3.  Load capacity of acidified (HCl-ATP) and unacidified attapulgite (ATP) with 20 g/L chlorpyrifos

    图  4  经多巴胺修饰后的酸化凹凸棒对20、5和1 g/L毒死蜱的负载率

    Figure  4.  Load capacity of acidified attapulgite loaded with 20, 5 and 1 g/L CPF

    图  5  (a) 凹凸棒 (ATP) 、 (b) 酸化凹凸棒 (HCl-ATP) 、 (c) 多巴胺修饰的凹凸棒 (PA) 、 (d) 负载毒死蜱的多巴胺修饰凹凸棒 (PA-CPF)、(e-f) PRCH和(g-i) PRCH截面的扫描电镜图

    Figure  5.  SEM of (a) attapulgite (ATP), (b) acidified attapulgite (HCl-ATP), (c) dopamine-modified attapulgite (PA), (d) dopamine-modified attapulgite located on chlorpyrifos (PA-CPF), (e-f) PRCH, (g-i) PRCH cross sections

    图  6  ATP、HCl-ATP、PA、PA-CPF、CPF、PRCH的氮吸附-脱附曲线 (a) 及比表面积 (b) 和总孔容积和平均孔径 (c)

    Figure  6.  Nitrogen adsorption and desorption curves(a), specific surface area (b), total pore volume and average pore radius (c) of ATP, HCl-ATP, PA, PA-CPF, CPF and PRCH

    图  7  ATP、HCl-ATP、PA、PA-CPF、PRCH和CPF的ζ电位

    Figure  7.  Zeta potentials of ATP, ATP-HCl, PA, PA-CPF, PRCH and CPF

    图  8  ATP、PA、PA-CPF、CPF和PRCH的红外光谱图

    Figure  8.  IR spectra of ATP, PA, PA-CPF, CPF and PRCH

    图  9  PRCH在pH = 5.5、7.0、8.5条件下CPF累积释放率(a)以及溶胀率(b),PRCH在3种pH缓冲溶液中的状态图(c)

    Figure  9.  CPF cumulative release rates (a) and swelling rates (b) of PRCH in buffer solutions with pH = 5.5, 7.0, and 8.5, and digital photos of PRCH in buffer solutions with different pH values (c)

    图  10  PRCH和毒死蜱在紫外光照射下的残留率(a)及其在45 ℃ (b)、25 ℃ (c)、5 ℃ (d)下的残留率

    Figure  10.  The residue rates of PRCH and CPF under UV irradiation (a) and the remaining rates at 45 ℃ (b), 25 ℃ (c) and 5 ℃ (d)

    表  1  不同黏土矿物装载毒死蜱的能力

    Table  1.   Chlorpyrifos loading capacity of different clay minerals

    矿物          
    Mineral          
    负载率
    Loading rate/%
    凹凸棒 Attapulgite 67.6
    海泡石 Sepiolite 22.9
    伊利石 Illite 19.8
    蒙脱石 Montmorillonite 16.6
    下载: 导出CSV

    表  2  PRCH在pH值为5.5、7.0和8.5的3种介质中毒死蜱的累积释放曲线拟合参数

    Table  2.   Fitting parameters of cumulative release curves of chlorpyrifos by PRCH at pH 5.5, 7.0 and 8.5

    pH释药模型特征常数
    K/h-n
    特性指数
    n
    决定系数
    R2
    扩散机制
    Diffusion mechanism
    5.50.61560.62860.7179Non-Fickian
    7.00.37601.1680.1281Ⅱ-Fickian
    8.521.350.33860.9293Ⅰ-Fickian
    下载: 导出CSV
  • [1] SINGH A, DHIMAN N, KAR A K, et al. Advances in controlled release pesticide formulations: prospects to safer integrated pest management and sustainable agriculture[J]. J Hazard Mater, 2020, 385: 121525. doi: 10.1016/j.jhazmat.2019.121525
    [2] 蔡冬清, 吴正岩, 吴丽芳, 等. 化肥与农药控失技术研发及产业化[J]. 科技促进发展, 2019, 15(4): 351-356.

    CAI D Q, WU Z Y, WU L F, et al. Loss-control technologies of fertilizer and pesticide and the industrilization[J]. Sci Technol Dev, 2019, 15(4): 351-356.
    [3] CHI Y, ZHANG G L, XIANG Y B, et al. Fabrication of a temperature-controlled-release herbicide using a nanocomposite[J]. ACS Sustain Chem Eng, 2017, 5(6): 4969-4975. doi: 10.1021/acssuschemeng.7b00348
    [4] 杨君, 张正, 崔忠凯, 等. 新型pH响应性噻虫嗪纳米脂质体的制备及其杀虫活性[J]. 农药学学报, 2020, 22(6): 1054-1060.

    YANG J, ZHANG Z, CUI Z K, et al. Fabrication of pH-responsive non-phospholipid liposomal nanocarriers for insecticidal activity of thiamethoxam[J]. Chin J Pestic Sci, 2020, 22(6): 1054-1060.
    [5] LIANG Y, GAO Y H, WANG W C, et al. Fabrication of smart stimuli-responsive mesoporous organosilica nano-vehicles for targeted pesticide delivery[J]. J Hazard Mater, 2020, 389: 122075. doi: 10.1016/j.jhazmat.2020.122075
    [6] DENG K L, GOU Y B, ZUO J, et al. A pH/temperature-sensitive semi-IPN bead for drug release carrier[J]. Adv Mater Res. 2010, 148-149: 1449-1452.
    [7] TREENATE P, MONVISADE P. In vitro drug release profiles of pH-sensitive hydroxyethylacryl chitosan/sodium alginate hydrogels using paracetamol as a soluble model drug[J]. Int J Biol Macromol, 2017, 99: 71-78. doi: 10.1016/j.ijbiomac.2017.02.061
    [8] ABD EL-GHAFFAR M A, HASHEM M S, EL-AWADY M K, et al. pH-sensitive sodium alginate hydrogels for riboflavin controlled release[J]. Carbohyd Polym, 2012, 89(2): 667-675. doi: 10.1016/j.carbpol.2012.03.074
    [9] HE F R, ZHOU Q F, WANG L Z, et al. Fabrication of a sustained release delivery system for pesticides using interpenetrating polyacrylamide/alginate/montmorillonite nanocomposite hydrogels[J]. Appl Clay Sci, 2019, 183: 105347. doi: 10.1016/j.clay.2019.105347
    [10] FERNáNDEZ-PéREZ M, VILLAFRANCA-SáNCHEZ M, FLORES-CéSPEDES F, et al. Use of bentonite and activated carbon in controlled release formulations of carbofuran[J]. 2005, J Agric Food Chem, 53(17): 6697-6703.
    [11] SREEKANTH REDDY O, SUBHA M C S, JITHENDRA T, et al. Curcumin encapsulated dual cross linked sodium alginate/montmorillonite polymeric composite beads for controlled drug delivery[J]. J Pharm Anal, 2021, 11(2): 191-199. doi: 10.1016/j.jpha.2020.07.002
    [12] 颜慧琼, 陈秀琼, 朱祺东, 等. 高岭土的球磨疏水改性及其在海藻酸盐凝胶微球中的应用[J]. 精细化工 2016, 33(4): 383-389.

    YAN H Q, CHEN X Q, ZHU Q D, et al. Hydrophobic modification of Kaolin via ball-milling method and its application in alginate composite microgel beads[J]. Fine Chem, 2016, 33(4): 383-389.
    [13] HE Y H , WU Z S, TU L, et al. Encapsulation and characterization of slow-release microbial fertilizer from the composites of bentonite and alginate[J]. Appl Clay Sci, 2015, 109-110: 68-75. doi: 10.1016/j.clay.2015.02.001
    [14] 陈铧耀, 周新华, 周红军, 等. 毒死蜱/壳聚糖改性凹凸棒土/海藻酸钠微球的制备与缓释性能[J]. 化工进展, 2017, 36(3): 1033-1040.

    CHEN H Y, ZHOU X H, ZHOU H J, et al. Preparation and slow-release performance of chlorpyrifos/chitosan modified attapulgite/sodium alginate microspheres[J]. Chem Ind Eng Prog, 2017, 36(3): 1033-1040.
    [15] ZHOU C H, KEELING J. Fundamental and applied research on clay minerals: from climate and environment to nanotechnology[J]. Appl Clay Sci, 2013, 74: 3-9. doi: 10.1016/j.clay.2013.02.013
    [16] FU H Y, TAN P, WANG R J, et al. Advances in organophosphorus pesticides pollution: current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies[J]. J Hazard Mater, 2022, 424: 127494. doi: 10.1016/j.jhazmat.2021.127494
    [17] 吴祥为, 花日茂, 唐俊. 表面活性剂对毒死蜱在水溶液中的光解影响[J]. 农业环境科学学报, 2009, 28(8): 1705-1711. doi: 10.3321/j.issn:1672-2043.2009.08.027

    WU X W, HUA R M, TANG J. Effect of surfactants on photolysis of chlorpyrifos in aqueous solution[J]. J Agro-Environ Sci, 2009, 28(8): 1705-1711. doi: 10.3321/j.issn:1672-2043.2009.08.027
    [18] OMIDIAN H, HASHEMI S A, SAMMES P G, et al. A model for the swelling of superabsorbent polymers[J]. Polymer, 1998, 39(26): 6697-6704. doi: 10.1016/S0032-3861(98)00095-0
    [19] YIN Y, YANG M, XI J, et al. A sodium alginate-based nano-pesticide delivery system for enhanced in vitro photostability and insecticidal efficacy of phloxine B[J]. Carbohyd Polym, 2020, 247: 116677. doi: 10.1016/j.carbpol.2020.116677
    [20] RITGER P L, PEPPAS N A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs[J]. J Control Release, 1987, 5(1): 23-36. doi: 10.1016/0168-3659(87)90034-4
    [21] HAO L, LIN G, LIAN J, et al. Carboxymethyl cellulose capsulated zein as pesticide nano-delivery system for improving adhesion and anti-UV properties[J]. Carbohyd Polym, 2020, 231: 115725. doi: 10.1016/j.carbpol.2019.115725
    [22] 郭娜, 王金生, 李剑, 等. 改性凹凸棒土在水处理中的应用现状[J]. 北京师范大学学报(自然科学版), 2014, 50(6): 634-637.

    GUO N, WANG J S, LI J, et al. Application of modified attapulgite in water treatment[J]. J Beijing Norm Univ(Nat Sci), 2014, 50(6): 634-637.
    [23] LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426-430. doi: 10.1126/science.1147241
    [24] SING K S J P, CHEMISTRY A. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Appl Chem, 1985, 57(4): 603-619. doi: 10.1351/pac198557040603
    [25] 陈天虎, 徐惠芳, 彭书传, 等. 凹凸棒石与酸反应纳米尺度研究: 反应机理和表面积变化[J]. 高校地质学报, 2004, 10(1): 98-105. doi: 10.3969/j.issn.1006-7493.2004.01.009

    CHEN T H, XU H F, PENG S C, et al. Nanometer scale study on reaction of palygorskite with acid: reaction mechanism and change of specific surface area[J]. Geol J China Univ, 2004, 10(1): 98-105. doi: 10.3969/j.issn.1006-7493.2004.01.009
    [26] XIANG Y B, ZHANG G L, CHEN C W, et al. Fabrication of a pH-responsively controlled-release pesticide using an attapulgite-based hydrogel[J]. ACS Sustain Chem Eng, 2017, 6(1): 1192-201.
    [27] 包朝玲, 陈秀琼, 雷梦圆, 等. 基于湿法球磨改性蒙脱土构建可负载疏水药物的海藻酸盐/有机蒙脱土复合凝胶微球及其释药性[J]. 材料导报, 2020, 34(10): 10171-10176. doi: 10.11896/cldb.19040208

    BAO C L, CHEN X Q, LEI M Y, et al. Construction of alginate/organic montmorillonite composite hydrogel beads capable of loading hydrophobic drugs based on wet-ball milling method modified montmorillonite and their release properties[J]. Mater Rep, 2020, 34(10): 10171-10176. doi: 10.11896/cldb.19040208
    [28] RASHIDIPOUR M, MALEKI A, KORDI S, et al. Pectin/chitosan/tripolyphosphate nanoparticles: efficient carriers for reducing soil sorption, cytotoxicity, and mutagenicity of paraquat and enhancing its herbicide activity[J]. J Agric Food Chem, 2019, 67(20): 5736-5745. doi: 10.1021/acs.jafc.9b01106
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  18
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-23
  • 录用日期:  2021-12-23
  • 网络出版日期:  2022-02-22
  • 刊出日期:  2022-06-10

目录

    /

    返回文章
    返回