Resistance status of Leptochloa chinensis to three acetyl-CoA carboxylase (ACCase) inhibitors in rice fields in Shanghai and involved ACCase gene mutations
-
摘要: 为明确上海市水稻田千金子对乙酰辅酶A羧化酶 (ACCase) 抑制剂类除草剂的抗性发生情况及可能存在的抗性机制,在上海市千金子发生严重地区的水稻田共采集51个种群,采用单剂量抗性甄别法测定了不同千金子种群对3种ACCase抑制剂类除草剂的抗性水平,扩增和比对了靶标酶ACCase基因部分片段的差异。结果显示:在氰氟草酯105 g/hm2有效成分剂量选择压下,8个千金子种群标记为抗性种群,6个种群为发展中抗性种群;在噁唑酰草胺 120 g/hm2有效成分剂量选择压下,4个千金子种群标记为抗性种群,5个种群为发展中抗性种群;在精噁唑禾草灵62.1 g/hm2有效成分剂量选择压下,6个千金子种群标记为抗性种群,2个种群为发展中抗性种群。对15个抗性千金子种群靶标酶基因片段的测序发现,9个种群共发生了4种ACCase基因突变类型,分别为ACCase基因 1999 位点色氨酸 (TGG) 突变为丝氨酸 (TCG)、1999位点色氨酸 (TGG) 突变为半胱氨酸 (TGT)、2027位点色氨酸 (TGG) 突变为丝氨酸 (TCG) 以及2027位点色氨酸 (TGG) 突变为半胱氨酸 (TGT/TGC)。其中,5个抗性千金子种群ACCase 基因突变频率均大于60%。研究表明,ACCase抑制剂类除草剂抗性千金子在上海市部分地区发生已较为严重,ACCase 基因突变是导致不同千金子种群对该类除草剂产生抗性的重要原因之一。Abstract: In order to determine the resistance level and the potential resistance mechanism of Leptochloa chinensis to acetyl-CoA carboxylase (ACCase)-inhibiting herbicides, 51 populations of L. chinensis were collected from the rice fields in Shanghai. Whole-plant single-dose experiments were conducted to investigate the resistance level of different populations to ACCase-inhibiting herbicides, including cyhalofop-butyl at 105 g (a.i.)/hm2, metamifop at 120 g (a.i.)/hm2 and fenoxaprop-P-ethyl at 62.1 g (a.i.)/hm2 in the greenhouse. Meanwhile, the sequences of the target gene ACCase in resistant populations were analyzed. The results showed that of the 51 populations tested, eight populations were found to be resistant to clodinafop-propargyl, four populations resistant to metamifop, and six populations resistant to fenoxaprop-P-ethyl; six, five and two populations were found to be developing resistance to cyhalofop-butyl, metamifop and fenoxaprop-P-ethyl, respectively. Sequencing results showed that nine of fifteen resistant populations showed four different kinds of mutations in ACCase sequence, namely Trp (TGG)-1999-Ser (TCG), Trp (TGG)-1999-Cys (TGT), Trp (TGG)-2027-Ser (TCG) and Trp (TGG)-2027-Cys (TGT/TGC), but there were no mutations in other populations. Besides, five populations had mutant frequencies higher than 60%. Our results indicated that L. chinensis was extensively resistant to ACCase-inhibiting herbicides in some rice fields in Shanghai, and the mutations in the ACCase gene were one of the main causes of the resistance of L. chinensis populations to ACCase-inhibiting herbicides.
-
表 1 千金子种群的采集地点
Table 1. Source locations of the L. chinensis populations examined in this study
种群
Population采集地点
Sampling site经纬度
Longitude and latitude种群
Population采集地点
Sampling site经纬度
Longitude and latitude2017-CM1 崇明区直河村
Zhihe Village, Chongming District121.5996°E;
31.6425°N2017-JS1 金山区曾家圩
Zengjia Village, Jinshan District121.1790°E;
30.7878°N2017-CM2 崇明区三官村
Sanguan Village, Chongming District121.2996°E;
31.7893°N2017-JS2 金山区百家村
Baijia Village, Jinshan District121.2835°E;
30.8238°N2017-CM3 崇明区江平村
Jiangping Village, Chongming District121.5320°E;
31.6678°N2017-JS3 金山区山塘村
Shantang Village, Jinshan District121.1722°E;
30.7819°N2017-CM4 崇明区立新村
Lixin Village, Chongming District121.9090°E;
31.5271°N2017-JS4 金山区蔡家村
Caijia Village, Jinshan District121.0215°E;
30.8771°N2017-CM5 崇明区定南村
Dingnan Village, Chongming District121.4042°E;
31.7268°N2017-JS5 金山区秦阳村
Qinyang Village, Jinshan District121.2661°E;
30.7876°N2017-CM6 崇明区新民村
Xinmin Village, Chongming District121.5592°E;
31.6187°N2017-JS6 金山区镇南村
Zhennan Village, Jinshan District121.4013°E;
30.7887°N2017-CM7 崇明区新海农场
Xinhai Farm, Chongming District121.2436°E;
31.8152°N2017-JS7 金山区建国村
Jianguo Village, Jinshan District121.4036°E;
30.8163°N2017-CM8 崇明区西新村
Xixin Village, Chongming District121.2657°E;
31.7850°N2017-MH1 闵行区联民村
Lianmin Village, Minhang District121.4958°E;
31.0492°N2017-CM9 崇明区富军村
Fujun Village, Chongming District121.6754°E;
31.6187°N2017-PD1 浦东新区会龙村
Huilong Village, Pudong New Area121.7161°E;
31.1000°N2016-FX1 奉贤区金港村
Jingang Village, Fengxian District121.4575°E;
30.9869°N2017-PD2 浦东新区万宝村
Wanbao Village, Pudong New Area121.8228°E;
30.9620°N2016-FX2 奉贤区北阮家
Beiruan Village, Fengxian District121.4053°E;
30.9342°N2017-PD3 浦东新区牌楼村
Pailou Village, Pudong New Area121.5584°E;
31.0577°N2017-FX1 奉贤区韩村村
Hancun Village, Fengxian District121.4714°E;
30.9533°N2017-PD4 浦东新区成日村
Chengri Village, Pudong New Area121.8305°E;
31.0597°N2017-FX2 奉贤区包家弄
Baojia Village, Fengxian District121.4717°E;
30.9611°N2017-PD5 浦东新区新兴村
Xinxing Village, Pudong New Area121.7302°E;
31.0992°N2017-FX3 奉贤区屠家村
Tujia Village, Fengxian District121.4781°E;
30.9708°N2017-PD6 浦东新区新如村
Xinru Village, Pudong New Area121.8174°E;
31.0710°N2017-FX4 奉贤区公谊村
Gongyi Village, Fengxian District121.4636°E;
30.9644°N2017-PD7 浦东新区森林村
Senlin Village, Pudong New Area121.7377°E;
31.2114°N2016-JD1 嘉定区金家村
Jinjia Village, Jiading District121.2917°E;
31.4414°N2017-PD8 浦东新区棉场村
Mianchang Village, Pudong New Area121.8469°E;
30.9915°N2016-JD2 嘉定区南村村
Nancun Village, Jiading District121.2992°E;
31.4075°N2017-PD9 浦东新区卫民村
Weimin Village, Pudong New Area121.7406°E;
31.0987°N2016-JD3 嘉定区葛隆村
Gelong Village, Jiading District121.1547°E;
31.3928°N2016-QP1 青浦区张巷村
Zhangxiang Village, Pudong New Area121.0733°E;
31.0778°N2016-JD4 嘉定区赵巷村
Zhaoxiang Village, Jiading District121.2158°E;
31.3039°N2016-QP2 青浦区安庄村
Anzhuang Village, Qingpu District121.0394°E;
31.0772°N2016-JD5 嘉定区曹家宅
Caojia Village, Jiading District121.2992°E;
31.3992°N2016-QP3 青浦区马塘村
Matang Village, Qingpu District121.0428°E;
30.9803°N2017-JD1 嘉定区汤家宅
Tangjia Village, Jiading District121.3147°E;
31.4839°N2017-QP1 青浦区莲湖村
Lianhu Village, Qingpu District120.9771°E;
31.0663°N2017-JD2 嘉定区梁卢宅
Lianglu Village, Jiading District121.2667°E;
31.4447°N2017-QP2 青浦区岑卜村
Cenbu Village, Qingpu District120.9376°E;
31.0589°N2017-JD3 嘉定区长塘村
Changtang Village, Jiading District121.3058°E;
31.4453°N2017-QP3 青浦区三和村
Sanhe Village, Qingpu District120.8952°E;
31.0528°N2017-JD4 嘉定区娄塘村
Loutang village, Jiading district121.2094°E;
31.4361°N2016-SJ1 松江区查家浜
Zhajia Village, Songjiang District121.0483°E;
30.9356°N2017-JD5 嘉定区旺泾村
Wangjing Village, Jiading District121.1819°E;
31.4183°N2016-SJ2 松江区南泖村
Nanmao Village, Songjiang District121.1414°E;
30.9464°N2017-JD6 嘉定区灯塔村
Dengta Village, Jiading District121.1644°E;
31.4350°N表 2 不同千金子种群在氰氟草酯105 g/hm2有效成分剂量处理下的存活率和抗性分类
Table 2. The survival rate and resistant category of the L. chinensis populations against cyhalofop-butyl at 105 g (a.i.)/hm2
种群
Population存活率
Survival rate/%抗性分类a
Resistant category种群
Population存活率
Survival rate/%抗性分类a
Resistant category2016-FX1 0 S 2017-JD2 10.0 DR 2016-FX2 0 S 2017-JD3 18.3 DR 2016-JD1 100 R 2017-JD4 59.2 R 2016-JD2 90.0 R 2017-JD5 79.2 R 2016-JD3 0 S 2017-JD6 0 S 2016-JD4 0 S 2017-JS1 16.7 DR 2016-JD5 4.2 DR 2017-JS2 23.3 R 2016-QP1 0 S 2017-JS3 0 S 2016-QP2 0 S 2017-JS4 0 S 2016-QP3 0 S 2017-JS5 0 S 2016-SJ1 0 S 2017-JS6 0 S 2016-SJ2 0 S 2017-JS7 0 S 2017-CM1 60.0 R 2017-MH1 0 S 2017-CM2 0 S 2017-PD1 2.5 DR 2017-CM3 32.5 R 2017-PD2 0 S 2017-CM4 0 S 2017-PD3 0 S 2017-CM5 0 S 2017-PD4 0 S 2017-CM6 0 S 2017-PD5 9.2 DR 2017-CM7 0 S 2017-PD6 0 S 2017-CM8 0 S 2017-PD7 0 S 2017-CM9 96.7 R 2017-PD8 0 S 2017-FX1 0 S 2017-PD9 0 S 2017-FX2 0 S 2017-QP1 0 S 2017-FX3 0 S 2017-QP2 0 S 2017-FX4 0 S 2017-QP3 0 S 2017-JD1 0 S 注:a 敏感种群 (S):存活率 <1%;发展中抗性种群 (DR):存活率在1% ~ 20%之间;抗性种群 (R):存活率 >20%。Note: a Susceptible population (S) : survival rate <1%; development of resistance population (DR): 1%≤ survival rate ≤20%; resistant population (R): survival rate >20%. 表 3 不同千金子种群在噁唑酰草胺120 g/hm2有效成分剂量下的存活率和抗性分类
Table 3. The survival rate and resistant category of the L. chinensis populations against metamifop at 120 g (a.i.)/hm2
种群
Population存活率
Survival rate/%抗性分类a
Resistant category种群
Population存活率
Survival rate/%抗性分类a
Resistant category2016-FX1 0 S 2017-JD2 5.0 DR 2016-FX2 0 S 2017-JD3 0 S 2016-JD1 62.5 R 2017-JD4 0 S 2016-JD2 100 R 2017-JD5 6.7 DR 2016-JD3 0 S 2017-JD6 0 S 2016-JD4 0 S 2017-JS1 0 S 2016-JD5 0 S 2017-JS2 0 S 2016-QP1 0 S 2017-JS3 0 S 2016-QP2 0 S 2017-JS4 0 S 2016-QP3 5.8 DR 2017-JS5 0 S 2016-SJ1 0 S 2017-JS6 0 S 2016-SJ2 0 S 2017-JS7 0 S 2017-CM1 28.3 R 2017-MH1 0 S 2017-CM2 0 S 2017-PD1 0 S 2017-CM3 5.0 DR 2017-PD2 0 S 2017-CM4 0 S 2017-PD3 0 S 2017-CM5 0 S 2017-PD4 0 S 2017-CM6 0 S 2017-PD5 3.3 DR 2017-CM7 0 S 2017-PD6 0 S 2017-CM8 0 S 2017-PD7 0 S 2017-CM9 45.0 R 2017-PD8 0 S 2017-FX1 0 S 2017-PD9 0 S 2017-FX2 0 S 2017-QP1 0 S 2017-FX3 0 S 2017-QP2 0 S 2017-FX4 0 S 2017-QP3 0 S 2017-JD1 0 S 注:a敏感种群 (S):存活率 <1%;发展中抗性种群 (DR):存活率在1% ~ 20%之间;抗性种群 (R):存活率 >20%。Note: a Susceptible population (S): survival rate <1%; development of resistance population (DR): 1%≤ survival rate ≤20%; resistant population (R): survival rate >20%. 表 4 不同千金子种群在精噁唑禾草灵62.1 g/hm2有效成分剂量下的存活率和抗性分类
Table 4. The survival rate and resistant category of the L. chinensis populations against fenoxaprop-P-ethyl at 62.1 g (a.i.)/hm2
种群
Population存活率
Survival rate/%抗性分类a
Resistant category种群
Population存活率
Survival rate/%抗性分类a
Resistant category2016-FX1 0 S 2017-JD2 35.8 R 2016-FX2 0 S 2017-JD3 0 S 2016-JD1 61.7 R 2017-JD4 0 S 2016-JD2 100 R 2017-JD5 11.7 DR 2016-JD3 0 S 2017-JD6 0 S 2016-JD4 0 S 2017-JS1 0 S 2016-JD5 0 S 2017-JS2 0 S 2016-QP1 0 S 2017-JS3 0 S 2016-QP2 0 S 2017-JS4 0 S 2016-QP3 0 S 2017-JS5 0 S 2016-SJ1 0 S 2017-JS6 0 S 2016-SJ2 0 S 2017-JS7 0 S 2017-CM1 67.5 R 2017-MH1 0 S 2017-CM2 0 S 2017-PD1 0 S 2017-CM3 12.5 DR 2017-PD2 0 S 2017-CM4 0 S 2017-PD3 0 S 2017-CM5 0 S 2017-PD4 0 S 2017-CM6 0 S 2017-PD5 22.5 R 2017-CM7 0 S 2017-PD6 0 S 2017-CM8 0 S 2017-PD7 0 S 2017-CM9 75.0 R 2017-PD8 0 S 2017-FX1 0 S 2017-PD9 0 S 2017-FX2 0 S 2017-QP1 0 S 2017-FX3 0 S 2017-QP2 0 S 2017-FX4 0 S 2017-QP3 0 S 2017-JD1 0 S 注:a敏感种群 (S):存活率 <1%;发展中抗性种群 (DR):存活率在1% ~ 20%之间;抗性种群 (R):存活率 >20%。Note: a Susceptible population (S): survival rate <1%; development of resistance population (DR): 1%≤ survival rate ≤20%; resistant population (R): survival rate >20%. 表 5 抗性千金子种群中ACCase基因突变形式及突变频率
Table 5. ACCase gene mutation form and mutation ratio of the resistant L. chinensis populations
种群
Population突变形式
Mutation type突变频率
Mutation ratio/%2016-JD1 TGG-1999-TCG 88.3 2016-JD2 TGG-1999-TCG 96.7 2016-JD5 Na 0 2016-QP3 Na 0 2017-CM1 TGG-2027-TGT 61.7 2017-CM3 TGG-2027-TGT 18.3 2017-CM3 TGG-2027-TCG 30.0 2017-CM9 TGG-2027-TCG 86.7 2017-JD2 TGG-1999-TGT 6.7 2017-JD2 TGG-2027-TGC 11.7 2017-JD3 Na 0 2017-JD4 Na 0 2017-JD5 TGG-1999-TGT 68.3 2017-JS1 Na 0 2017-JS2 Na 0 2017-PD1 TGG-2027-TCG 5.0 2017-PD5 TGG-1999-TGT 20.0 注:a N表示ACCase基因已知氨基酸突变位点的密码子未发生碱基突变。Note: a N indicates that the corresponding codon of all the known mutation sites in ACCase don’t change. -
[1] CHAUHAN B S, JOHNSON D E. Germination ecology of Chinese sprangletop (Leptochloa chinensis) in the Philippines[J]. Weed Sci, 2008, 56(6): 820-825. doi: 10.1614/WS-08-070.1 [2] 文马强, 周小毛, 刘佳, 等. 直播水稻田千金子对氰氟草酯抗性测定及抗性生化机理研究[J]. 南方农业学报, 2017, 48(4): 647-652. doi: 10.3969/j.issn.2095-1191.2017.04.013WEN M Q, ZHOU X M, LIU J, et al. Resistance of Leptochloa chinensis (L) Nees. to cyhalofop-butyl in rice field of direct seeding and resistance biochemical mechanism research[J]. J South Agric, 2017, 48(4): 647-652. doi: 10.3969/j.issn.2095-1191.2017.04.013 [3] 吴尚, 张纪利, 李保同, 等. 千金子对水稻生长的影响及其经济阈值[J]. 中国农业科学, 2015, 48(3): 469-478. doi: 10.3864/j.issn.0578-1752.2015.03.07WU S, ZHANG J L, LI B T, et al. Influence of Leptochloa chinensis on the growth of paddy rice and its economic threshold[J]. Sci Agric Sin, 2015, 48(3): 469-478. doi: 10.3864/j.issn.0578-1752.2015.03.07 [4] 武向文, 王法国, 曹青. 华东部分稻区水稻田千金子对氰氟草酯的抗性[J]. 农药学学报, 2019, 21(3): 285-290.WU X W, WANG F G, CAO Q. Resistance of Leptochloa chinensis populations to cyhalofop-butyl in rice fields of eastern China[J]. Chin J Pestic Sci, 2019, 21(3): 285-290. [5] TAKANO H K, OVEJERO R F L, BELCHIOR G G, et al. ACCase-inhibiting herbicides: mechanism of action, resistance evolution and stewardship[J]. Sci Agric (Piracicaba, Braz), 2021, 78(1): e20190102. doi: 10.1590/1678-992x-2019-0102 [6] KAUNDUN S S. Resistance to acetyl‐CoA carboxylase‐inhibiting herbicides[J]. Pest Manag Sci, 2014, 70(9): 1405-1417. doi: 10.1002/ps.3790 [7] HEAP I M. The international survey of herbicide resistant weeds [DB/OL]. [2021-09-11]. http://www.weedscience.com. [8] 杨浩娜, 王立峰, 邬腊梅, 等. 稻田恶性杂草千金子的抗药性研究进展[J]. 农药学学报, 2019, 21(5-6): 772-779.YANG H N, WANG L F, WU L M, et al. Herbicide resistance of Chinese sprangletop [Leptochloa chinensis (L.) Nees] in rice fields: a review[J]. Chin J Pestic Sci, 2019, 21(5-6): 772-779. [9] YUAN G H, TIAN Z H, LI T, et al. Cross-resistance pattern to ACCase–inhibiting herbicides in a rare Trp-2027-Ser mutation Chinese sprangletop (Leptochloa chinensis) population[J]. Chil J Agric Res, 2021, 81(1): 62-69. doi: 10.4067/S0718-58392021000100062 [10] YANNICCARI M, GIGÓN R. Cross-resistance to acetyl-CoA carboxylase–inhibiting herbicides conferred by a target-site mutation in perennial ryegrass (Lolium perenne) from Argentina[J]. Weed Sci, 2020, 68(2): 116-124. doi: 10.1017/wsc.2020.1 [11] YU J X, GAO H T, PAN L, et al. Mechanism of resistance to cyhalofop-butyl in Chinese sprangletop (Leptochloa chinensis (L.) Nees)[J]. Pestic Biochem Physiol, 2017, 143: 306-311. doi: 10.1016/j.pestbp.2016.11.001 [12] YANNICCARI M, GIGÓN R, LARSEN A. Cytochrome P450 herbicide metabolism as the main mechanism of cross-resistance to ACCase- and ALS-inhibitors in Lolium spp. populations from Argentina: a molecular approach in characterization and detection[J]. Front Plant Sci, 2020, 11: 600301. doi: 10.3389/fpls.2020.600301 [13] DENG W, YANG M T, LI Y, et al. Enhanced metabolism confers a high level of cyhalofop-butyl resistance in a Chinese sprangletop (Leptochloa chinensis (L.) Nees) population[J]. Pest Manag Sci, 2021, 77(5): 2576-2583. doi: 10.1002/ps.6297 [14] GUO W L, CHI Y Y, FENG L, et al. Fenoxaprop-P-ethyl and mesosulfuron-methyl resistance status of shortawn foxtail (Alopecurus aequalis Sobol.) in eastern China[J]. Pestic Biochem Physiol, 2018, 148: 126-132. doi: 10.1016/j.pestbp.2018.04.013 [15] OWEN M J, WALSH M J, LLEWELLYN R S, et al. Widespread occurrence of multiple herbicide resistance in Western Australian annual ryegrass (Lolium rigidum) populations[J]. Aust J Agric Res, 2007, 58(7): 711-718. doi: 10.1071/AR06283 [16] KHAMMASSI M, HAJRI H, MENCHARI Y, et al. Current status in resistance to ACCase and ALS-inhibiting herbicides in rigid ryegrass populations from cereal crops in North of Tunisia[J]. J Agric Sci, 2019, 157(9-10): 676-683. doi: 10.1017/S002185962000009X [17] 刘兴林, 孙涛, 付声姣, 等. 水稻田除草剂的应用及杂草抗药性现状[J]. 西北农林科技大学学报(自然科学版), 2015, 43(7): 115-126.LIU X L, SUN T, FU S J, et al. Herbicide application and weeds resistance in rice field in China[J]. J Northwest A&F Univ (Nat Sci Ed), 2015, 43(7): 115-126. [18] 马国兰, 刘都才, 刘雪源, 等. 五氟磺草胺等 6 种除草剂对直播稻田高龄稗草的生物活性及田间控制效果[J]. 植物保护, 2014, 40(3): 204-208. doi: 10.3969/j.issn.0529-1542.2014.03.040MA G L, LIU D C, LIU X Y, et al. Biological activity and control effect of six herbicides to large Echinochloa crusgalli (L.) Beauv. in direct-seeding rice field[J]. Plant Prot, 2014, 40(3): 204-208. doi: 10.3969/j.issn.0529-1542.2014.03.040 [19] 袁国徽. 小麦田耿氏硬草对精噁唑禾草灵的抗性研究[D]. 泰安: 山东农业大学, 2016.YUAN G H. Resistance of of keng stiffgrass (Pseudosclerochloa kengiana (Ohwi) Tzvel.) to fenoxaprop-P-ethyl[D]. Taian: Shandong Agricultural University, 2016. [20] GRESSEL J, SEGEL L, RANSOM J K. Managing the delay of evolution of herbicide resistance in parasitic weeds[J]. Int J Pest Manag, 1996, 42(2): 113-129. doi: 10.1080/09670879609371981 [21] DEVINE M D. Mechanisms of resistance to acetyl-coenzyme A carboxylase inhibitors: a review[J]. Pestic Sci, 1997, 51(3): 259-264. doi: 10.1002/(SICI)1096-9063(199711)51:3<259::AID-PS644>3.0.CO;2-S [22] HAN H P, YU Q, OWEN M J, et al. Widespread occurrence of both metabolic and target-site herbicide resistance mechanisms in Lolium rigidum populations[J]. Pest Manag Sci, 2016, 72(2): 255-263. doi: 10.1002/ps.3995 [23] BECKIE H J, TARDIF F J. Herbicide cross resistance in weeds[J]. Crop Prot, 2012, 35: 15-28. [24] PENG Y J, PAN L, LIU D C, et al. Confirmation and characterization of cyhalofop-butyl–resistant Chinese sprangletop (Leptochloa chinensis) populations from China[J]. Weed Sci, 2020, 68(3): 253-259. doi: 10.1017/wsc.2020.15 [25] 张怡, 陈丽萍, 徐笔奇, 等. 浙江稻区千金子对氰氟草酯和噁唑酰草胺的抗药性及其分子机制研究[J]. 农药学学报, 2020, 22(3): 447-453.ZHANG Y, CHEN L P, XU B Q, et al. Resistance of Leptochloa chinensis (L.) Nees to cyhalofop-butyl and metamifop in rice fields of Zhejiang Province and involved molecular mechanism[J]. Chin J Pestic Sci, 2020, 22(3): 447-453. [26] DENG W, CAI J X, ZHANG J Y, et al. Molecular basis of resistance to ACCase-inhibiting herbicide cyhalofop-butyl in Chinese sprangletop (Leptochloa chinensis (L.) Nees) from China[J]. Pestic Biochem Physiol, 2019, 158: 143-148. doi: 10.1016/j.pestbp.2019.05.004 [27] POWLES S B, YU Q. Evolution in action: plants resistant to herbicides[J]. Annu Rev Plant Biol, 2010, 61: 317-347. doi: 10.1146/annurev-arplant-042809-112119 [28] IWAKAMI S, UCHINO A, WATANABE H, et al. Isolation and expression of genes for acetolactate synthase and acetyl-CoA carboxylase in Echinochloa phyllopogon, a polyploid weed species[J]. Pest Manag Sci, 2012, 68(7): 1098-1106. doi: 10.1002/ps.3287 [29] PETIT C, DUHIEU B, BOUCANSAUD K, et al. Complex genetic control of non-target-site-based resistance to herbicides inhibiting acetyl-coenzyme A carboxylase and acetolactate-synthase in Alopecurus myosuroides Huds[J]. Plant Sci, 2010, 178(6): 501-509. doi: 10.1016/j.plantsci.2010.03.007 [30] YUAN J S, TRANEL P J, STEWART C N Jr. Non-target-site herbicide resistance: a family business[J]. Trends Plant Sci, 2007, 12(1): 6-13. doi: 10.1016/j.tplants.2006.11.001 [31] CHEN K, PENG Y J, ZHANG L, et al. Whole transcriptome analysis resulted in the identification of Chinese sprangletop (Leptochloa chinensis) genes involved in cyhalofop-butyl tolerance[J]. BMC Genomics, 2021, 22(1): 521. doi: 10.1186/s12864-021-07856-z -