• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

上海市水稻田千金子对3种乙酰辅酶A羧化酶抑制剂的抗性现状及酶突变机制

袁国徽 田志慧 高原 沈国辉

袁国徽, 田志慧, 高原, 沈国辉. 上海市水稻田千金子对3种乙酰辅酶A羧化酶抑制剂的抗性现状及酶突变机制[J]. 农药学学报, 2022, 24(3): 492-500. doi: 10.16801/j.issn.1008-7303.2022.0012
引用本文: 袁国徽, 田志慧, 高原, 沈国辉. 上海市水稻田千金子对3种乙酰辅酶A羧化酶抑制剂的抗性现状及酶突变机制[J]. 农药学学报, 2022, 24(3): 492-500. doi: 10.16801/j.issn.1008-7303.2022.0012
YUAN Guohui, TIAN Zhihui, GAO Yuan, SHEN Guohui. Resistance status of Leptochloa chinensis to three acetyl-CoA carboxylase (ACCase) inhibitors in rice fields in Shanghai and involved ACCase gene mutations[J]. Chinese Journal of Pesticide Science, 2022, 24(3): 492-500. doi: 10.16801/j.issn.1008-7303.2022.0012
Citation: YUAN Guohui, TIAN Zhihui, GAO Yuan, SHEN Guohui. Resistance status of Leptochloa chinensis to three acetyl-CoA carboxylase (ACCase) inhibitors in rice fields in Shanghai and involved ACCase gene mutations[J]. Chinese Journal of Pesticide Science, 2022, 24(3): 492-500. doi: 10.16801/j.issn.1008-7303.2022.0012

上海市水稻田千金子对3种乙酰辅酶A羧化酶抑制剂的抗性现状及酶突变机制

doi: 10.16801/j.issn.1008-7303.2022.0012
基金项目: 上海市科技兴农重点攻关项目(2020-02-08-00-12-F01490);上海市农业科学院卓越团队项目(农科创2018 B-01)
详细信息
    作者简介:

    袁国徽,mypostok@126.com

    通讯作者:

    沈国辉,ghshen65@163.com

  • 中图分类号: S481.4;S482.4

Resistance status of Leptochloa chinensis to three acetyl-CoA carboxylase (ACCase) inhibitors in rice fields in Shanghai and involved ACCase gene mutations

Funds: Shanghai Agriculture Applied Technology Development Program (2020-02-08-00-12-F01490), Shanghai Academy of Agricultural Sciences for the Program of Excellent Research Team (2018 B-01).
  • 摘要: 为明确上海市水稻田千金子对乙酰辅酶A羧化酶 (ACCase) 抑制剂类除草剂的抗性发生情况及可能存在的抗性机制,在上海市千金子发生严重地区的水稻田共采集51个种群,采用单剂量抗性甄别法测定了不同千金子种群对3种ACCase抑制剂类除草剂的抗性水平,扩增和比对了靶标酶ACCase基因部分片段的差异。结果显示:在氰氟草酯105 g/hm2有效成分剂量选择压下,8个千金子种群标记为抗性种群,6个种群为发展中抗性种群;在噁唑酰草胺 120 g/hm2有效成分剂量选择压下,4个千金子种群标记为抗性种群,5个种群为发展中抗性种群;在精噁唑禾草灵62.1 g/hm2有效成分剂量选择压下,6个千金子种群标记为抗性种群,2个种群为发展中抗性种群。对15个抗性千金子种群靶标酶基因片段的测序发现,9个种群共发生了4种ACCase基因突变类型,分别为ACCase基因 1999 位点色氨酸 (TGG) 突变为丝氨酸 (TCG)、1999位点色氨酸 (TGG) 突变为半胱氨酸 (TGT)、2027位点色氨酸 (TGG) 突变为丝氨酸 (TCG) 以及2027位点色氨酸 (TGG) 突变为半胱氨酸 (TGT/TGC)。其中,5个抗性千金子种群ACCase 基因突变频率均大于60%。研究表明,ACCase抑制剂类除草剂抗性千金子在上海市部分地区发生已较为严重,ACCase 基因突变是导致不同千金子种群对该类除草剂产生抗性的重要原因之一。
  • 表  1  千金子种群的采集地点

    Table  1.   Source locations of the L. chinensis populations examined in this study

    种群
    Population
    采集地点
    Sampling site
    经纬度
    Longitude and latitude
    种群
    Population
    采集地点
    Sampling site
    经纬度
    Longitude and latitude
    2017-CM1 崇明区直河村
    Zhihe Village, Chongming District
    121.5996°E;
    31.6425°N
    2017-JS1 金山区曾家圩
    Zengjia Village, Jinshan District
    121.1790°E;
    30.7878°N
    2017-CM2 崇明区三官村
    Sanguan Village, Chongming District
    121.2996°E;
    31.7893°N
    2017-JS2 金山区百家村
    Baijia Village, Jinshan District
    121.2835°E;
    30.8238°N
    2017-CM3 崇明区江平村
    Jiangping Village, Chongming District
    121.5320°E;
    31.6678°N
    2017-JS3 金山区山塘村
    Shantang Village, Jinshan District
    121.1722°E;
    30.7819°N
    2017-CM4 崇明区立新村
    Lixin Village, Chongming District
    121.9090°E;
    31.5271°N
    2017-JS4 金山区蔡家村
    Caijia Village, Jinshan District
    121.0215°E;
    30.8771°N
    2017-CM5 崇明区定南村
    Dingnan Village, Chongming District
    121.4042°E;
    31.7268°N
    2017-JS5 金山区秦阳村
    Qinyang Village, Jinshan District
    121.2661°E;
    30.7876°N
    2017-CM6 崇明区新民村
    Xinmin Village, Chongming District
    121.5592°E;
    31.6187°N
    2017-JS6 金山区镇南村
    Zhennan Village, Jinshan District
    121.4013°E;
    30.7887°N
    2017-CM7 崇明区新海农场
    Xinhai Farm, Chongming District
    121.2436°E;
    31.8152°N
    2017-JS7 金山区建国村
    Jianguo Village, Jinshan District
    121.4036°E;
    30.8163°N
    2017-CM8 崇明区西新村
    Xixin Village, Chongming District
    121.2657°E;
    31.7850°N
    2017-MH1 闵行区联民村
    Lianmin Village, Minhang District
    121.4958°E;
    31.0492°N
    2017-CM9 崇明区富军村
    Fujun Village, Chongming District
    121.6754°E;
    31.6187°N
    2017-PD1 浦东新区会龙村
    Huilong Village, Pudong New Area
    121.7161°E;
    31.1000°N
    2016-FX1 奉贤区金港村
    Jingang Village, Fengxian District
    121.4575°E;
    30.9869°N
    2017-PD2 浦东新区万宝村
    Wanbao Village, Pudong New Area
    121.8228°E;
    30.9620°N
    2016-FX2 奉贤区北阮家
    Beiruan Village, Fengxian District
    121.4053°E;
    30.9342°N
    2017-PD3 浦东新区牌楼村
    Pailou Village, Pudong New Area
    121.5584°E;
    31.0577°N
    2017-FX1 奉贤区韩村村
    Hancun Village, Fengxian District
    121.4714°E;
    30.9533°N
    2017-PD4 浦东新区成日村
    Chengri Village, Pudong New Area
    121.8305°E;
    31.0597°N
    2017-FX2 奉贤区包家弄
    Baojia Village, Fengxian District
    121.4717°E;
    30.9611°N
    2017-PD5 浦东新区新兴村
    Xinxing Village, Pudong New Area
    121.7302°E;
    31.0992°N
    2017-FX3 奉贤区屠家村
    Tujia Village, Fengxian District
    121.4781°E;
    30.9708°N
    2017-PD6 浦东新区新如村
    Xinru Village, Pudong New Area
    121.8174°E;
    31.0710°N
    2017-FX4 奉贤区公谊村
    Gongyi Village, Fengxian District
    121.4636°E;
    30.9644°N
    2017-PD7 浦东新区森林村
    Senlin Village, Pudong New Area
    121.7377°E;
    31.2114°N
    2016-JD1 嘉定区金家村
    Jinjia Village, Jiading District
    121.2917°E;
    31.4414°N
    2017-PD8 浦东新区棉场村
    Mianchang Village, Pudong New Area
    121.8469°E;
    30.9915°N
    2016-JD2 嘉定区南村村
    Nancun Village, Jiading District
    121.2992°E;
    31.4075°N
    2017-PD9 浦东新区卫民村
    Weimin Village, Pudong New Area
    121.7406°E;
    31.0987°N
    2016-JD3 嘉定区葛隆村
    Gelong Village, Jiading District
    121.1547°E;
    31.3928°N
    2016-QP1 青浦区张巷村
    Zhangxiang Village, Pudong New Area
    121.0733°E;
    31.0778°N
    2016-JD4 嘉定区赵巷村
    Zhaoxiang Village, Jiading District
    121.2158°E;
    31.3039°N
    2016-QP2 青浦区安庄村
    Anzhuang Village, Qingpu District
    121.0394°E;
    31.0772°N
    2016-JD5 嘉定区曹家宅
    Caojia Village, Jiading District
    121.2992°E;
    31.3992°N
    2016-QP3 青浦区马塘村
    Matang Village, Qingpu District
    121.0428°E;
    30.9803°N
    2017-JD1 嘉定区汤家宅
    Tangjia Village, Jiading District
    121.3147°E;
    31.4839°N
    2017-QP1 青浦区莲湖村
    Lianhu Village, Qingpu District
    120.9771°E;
    31.0663°N
    2017-JD2 嘉定区梁卢宅
    Lianglu Village, Jiading District
    121.2667°E;
    31.4447°N
    2017-QP2 青浦区岑卜村
    Cenbu Village, Qingpu District
    120.9376°E;
    31.0589°N
    2017-JD3 嘉定区长塘村
    Changtang Village, Jiading District
    121.3058°E;
    31.4453°N
    2017-QP3 青浦区三和村
    Sanhe Village, Qingpu District
    120.8952°E;
    31.0528°N
    2017-JD4 嘉定区娄塘村
    Loutang village, Jiading district
    121.2094°E;
    31.4361°N
    2016-SJ1 松江区查家浜
    Zhajia Village, Songjiang District
    121.0483°E;
    30.9356°N
    2017-JD5 嘉定区旺泾村
    Wangjing Village, Jiading District
    121.1819°E;
    31.4183°N
    2016-SJ2 松江区南泖村
    Nanmao Village, Songjiang District
    121.1414°E;
    30.9464°N
    2017-JD6 嘉定区灯塔村
    Dengta Village, Jiading District
    121.1644°E;
    31.4350°N
    下载: 导出CSV

    表  2  不同千金子种群在氰氟草酯105 g/hm2有效成分剂量处理下的存活率和抗性分类

    Table  2.   The survival rate and resistant category of the L. chinensis populations against cyhalofop-butyl at 105 g (a.i.)/hm2

    种群
    Population
    存活率
    Survival rate/%
    抗性分类a
    Resistant category
    种群
    Population
    存活率
    Survival rate/%
    抗性分类a
    Resistant category
    2016-FX1 0 S 2017-JD2 10.0 DR
    2016-FX2 0 S 2017-JD3 18.3 DR
    2016-JD1 100 R 2017-JD4 59.2 R
    2016-JD2 90.0 R 2017-JD5 79.2 R
    2016-JD3 0 S 2017-JD6 0 S
    2016-JD4 0 S 2017-JS1 16.7 DR
    2016-JD5 4.2 DR 2017-JS2 23.3 R
    2016-QP1 0 S 2017-JS3 0 S
    2016-QP2 0 S 2017-JS4 0 S
    2016-QP3 0 S 2017-JS5 0 S
    2016-SJ1 0 S 2017-JS6 0 S
    2016-SJ2 0 S 2017-JS7 0 S
    2017-CM1 60.0 R 2017-MH1 0 S
    2017-CM2 0 S 2017-PD1 2.5 DR
    2017-CM3 32.5 R 2017-PD2 0 S
    2017-CM4 0 S 2017-PD3 0 S
    2017-CM5 0 S 2017-PD4 0 S
    2017-CM6 0 S 2017-PD5 9.2 DR
    2017-CM7 0 S 2017-PD6 0 S
    2017-CM8 0 S 2017-PD7 0 S
    2017-CM9 96.7 R 2017-PD8 0 S
    2017-FX1 0 S 2017-PD9 0 S
    2017-FX2 0 S 2017-QP1 0 S
    2017-FX3 0 S 2017-QP2 0 S
    2017-FX4 0 S 2017-QP3 0 S
    2017-JD1 0 S
    注:a 敏感种群 (S):存活率 <1%;发展中抗性种群 (DR):存活率在1% ~ 20%之间;抗性种群 (R):存活率 >20%。Note: a Susceptible population (S) : survival rate <1%; development of resistance population (DR): 1%≤ survival rate ≤20%; resistant population (R): survival rate >20%.
    下载: 导出CSV

    表  3  不同千金子种群在噁唑酰草胺120 g/hm2有效成分剂量下的存活率和抗性分类

    Table  3.   The survival rate and resistant category of the L. chinensis populations against metamifop at 120 g (a.i.)/hm2

    种群
    Population
    存活率
    Survival rate/%
    抗性分类a
    Resistant category
    种群
    Population
    存活率
    Survival rate/%
    抗性分类a
    Resistant category
    2016-FX1 0 S 2017-JD2 5.0 DR
    2016-FX2 0 S 2017-JD3 0 S
    2016-JD1 62.5 R 2017-JD4 0 S
    2016-JD2 100 R 2017-JD5 6.7 DR
    2016-JD3 0 S 2017-JD6 0 S
    2016-JD4 0 S 2017-JS1 0 S
    2016-JD5 0 S 2017-JS2 0 S
    2016-QP1 0 S 2017-JS3 0 S
    2016-QP2 0 S 2017-JS4 0 S
    2016-QP3 5.8 DR 2017-JS5 0 S
    2016-SJ1 0 S 2017-JS6 0 S
    2016-SJ2 0 S 2017-JS7 0 S
    2017-CM1 28.3 R 2017-MH1 0 S
    2017-CM2 0 S 2017-PD1 0 S
    2017-CM3 5.0 DR 2017-PD2 0 S
    2017-CM4 0 S 2017-PD3 0 S
    2017-CM5 0 S 2017-PD4 0 S
    2017-CM6 0 S 2017-PD5 3.3 DR
    2017-CM7 0 S 2017-PD6 0 S
    2017-CM8 0 S 2017-PD7 0 S
    2017-CM9 45.0 R 2017-PD8 0 S
    2017-FX1 0 S 2017-PD9 0 S
    2017-FX2 0 S 2017-QP1 0 S
    2017-FX3 0 S 2017-QP2 0 S
    2017-FX4 0 S 2017-QP3 0 S
    2017-JD1 0 S
    注:a敏感种群 (S):存活率 <1%;发展中抗性种群 (DR):存活率在1% ~ 20%之间;抗性种群 (R):存活率 >20%。Note: a Susceptible population (S): survival rate <1%; development of resistance population (DR): 1%≤ survival rate ≤20%; resistant population (R): survival rate >20%.
    下载: 导出CSV

    表  4  不同千金子种群在精噁唑禾草灵62.1 g/hm2有效成分剂量下的存活率和抗性分类

    Table  4.   The survival rate and resistant category of the L. chinensis populations against fenoxaprop-P-ethyl at 62.1 g (a.i.)/hm2

    种群
    Population
    存活率
    Survival rate/%
    抗性分类a
    Resistant category
    种群
    Population
    存活率
    Survival rate/%
    抗性分类a
    Resistant category
    2016-FX1 0 S 2017-JD2 35.8 R
    2016-FX2 0 S 2017-JD3 0 S
    2016-JD1 61.7 R 2017-JD4 0 S
    2016-JD2 100 R 2017-JD5 11.7 DR
    2016-JD3 0 S 2017-JD6 0 S
    2016-JD4 0 S 2017-JS1 0 S
    2016-JD5 0 S 2017-JS2 0 S
    2016-QP1 0 S 2017-JS3 0 S
    2016-QP2 0 S 2017-JS4 0 S
    2016-QP3 0 S 2017-JS5 0 S
    2016-SJ1 0 S 2017-JS6 0 S
    2016-SJ2 0 S 2017-JS7 0 S
    2017-CM1 67.5 R 2017-MH1 0 S
    2017-CM2 0 S 2017-PD1 0 S
    2017-CM3 12.5 DR 2017-PD2 0 S
    2017-CM4 0 S 2017-PD3 0 S
    2017-CM5 0 S 2017-PD4 0 S
    2017-CM6 0 S 2017-PD5 22.5 R
    2017-CM7 0 S 2017-PD6 0 S
    2017-CM8 0 S 2017-PD7 0 S
    2017-CM9 75.0 R 2017-PD8 0 S
    2017-FX1 0 S 2017-PD9 0 S
    2017-FX2 0 S 2017-QP1 0 S
    2017-FX3 0 S 2017-QP2 0 S
    2017-FX4 0 S 2017-QP3 0 S
    2017-JD1 0 S
    注:a敏感种群 (S):存活率 <1%;发展中抗性种群 (DR):存活率在1% ~ 20%之间;抗性种群 (R):存活率 >20%。Note: a Susceptible population (S): survival rate <1%; development of resistance population (DR): 1%≤ survival rate ≤20%; resistant population (R): survival rate >20%.
    下载: 导出CSV

    表  5  抗性千金子种群中ACCase基因突变形式及突变频率

    Table  5.   ACCase gene mutation form and mutation ratio of the resistant L. chinensis populations

    种群
    Population
    突变形式
    Mutation type
    突变频率
    Mutation ratio/%
    2016-JD1TGG-1999-TCG88.3
    2016-JD2TGG-1999-TCG96.7
    2016-JD5Na0
    2016-QP3Na0
    2017-CM1TGG-2027-TGT61.7
    2017-CM3TGG-2027-TGT18.3
    2017-CM3TGG-2027-TCG30.0
    2017-CM9TGG-2027-TCG86.7
    2017-JD2TGG-1999-TGT6.7
    2017-JD2TGG-2027-TGC11.7
    2017-JD3Na0
    2017-JD4Na0
    2017-JD5TGG-1999-TGT68.3
    2017-JS1Na0
    2017-JS2Na0
    2017-PD1TGG-2027-TCG5.0
    2017-PD5TGG-1999-TGT20.0
    注:a N表示ACCase基因已知氨基酸突变位点的密码子未发生碱基突变。Note: a N indicates that the corresponding codon of all the known mutation sites in ACCase don’t change.
    下载: 导出CSV
  • [1] CHAUHAN B S, JOHNSON D E. Germination ecology of Chinese sprangletop (Leptochloa chinensis) in the Philippines[J]. Weed Sci, 2008, 56(6): 820-825. doi: 10.1614/WS-08-070.1
    [2] 文马强, 周小毛, 刘佳, 等. 直播水稻田千金子对氰氟草酯抗性测定及抗性生化机理研究[J]. 南方农业学报, 2017, 48(4): 647-652. doi: 10.3969/j.issn.2095-1191.2017.04.013

    WEN M Q, ZHOU X M, LIU J, et al. Resistance of Leptochloa chinensis (L) Nees. to cyhalofop-butyl in rice field of direct seeding and resistance biochemical mechanism research[J]. J South Agric, 2017, 48(4): 647-652. doi: 10.3969/j.issn.2095-1191.2017.04.013
    [3] 吴尚, 张纪利, 李保同, 等. 千金子对水稻生长的影响及其经济阈值[J]. 中国农业科学, 2015, 48(3): 469-478. doi: 10.3864/j.issn.0578-1752.2015.03.07

    WU S, ZHANG J L, LI B T, et al. Influence of Leptochloa chinensis on the growth of paddy rice and its economic threshold[J]. Sci Agric Sin, 2015, 48(3): 469-478. doi: 10.3864/j.issn.0578-1752.2015.03.07
    [4] 武向文, 王法国, 曹青. 华东部分稻区水稻田千金子对氰氟草酯的抗性[J]. 农药学学报, 2019, 21(3): 285-290.

    WU X W, WANG F G, CAO Q. Resistance of Leptochloa chinensis populations to cyhalofop-butyl in rice fields of eastern China[J]. Chin J Pestic Sci, 2019, 21(3): 285-290.
    [5] TAKANO H K, OVEJERO R F L, BELCHIOR G G, et al. ACCase-inhibiting herbicides: mechanism of action, resistance evolution and stewardship[J]. Sci Agric (Piracicaba, Braz), 2021, 78(1): e20190102. doi: 10.1590/1678-992x-2019-0102
    [6] KAUNDUN S S. Resistance to acetyl‐CoA carboxylase‐inhibiting herbicides[J]. Pest Manag Sci, 2014, 70(9): 1405-1417. doi: 10.1002/ps.3790
    [7] HEAP I M. The international survey of herbicide resistant weeds [DB/OL]. [2021-09-11]. http://www.weedscience.com.
    [8] 杨浩娜, 王立峰, 邬腊梅, 等. 稻田恶性杂草千金子的抗药性研究进展[J]. 农药学学报, 2019, 21(5-6): 772-779.

    YANG H N, WANG L F, WU L M, et al. Herbicide resistance of Chinese sprangletop [Leptochloa chinensis (L.) Nees] in rice fields: a review[J]. Chin J Pestic Sci, 2019, 21(5-6): 772-779.
    [9] YUAN G H, TIAN Z H, LI T, et al. Cross-resistance pattern to ACCase–inhibiting herbicides in a rare Trp-2027-Ser mutation Chinese sprangletop (Leptochloa chinensis) population[J]. Chil J Agric Res, 2021, 81(1): 62-69. doi: 10.4067/S0718-58392021000100062
    [10] YANNICCARI M, GIGÓN R. Cross-resistance to acetyl-CoA carboxylase–inhibiting herbicides conferred by a target-site mutation in perennial ryegrass (Lolium perenne) from Argentina[J]. Weed Sci, 2020, 68(2): 116-124. doi: 10.1017/wsc.2020.1
    [11] YU J X, GAO H T, PAN L, et al. Mechanism of resistance to cyhalofop-butyl in Chinese sprangletop (Leptochloa chinensis (L.) Nees)[J]. Pestic Biochem Physiol, 2017, 143: 306-311. doi: 10.1016/j.pestbp.2016.11.001
    [12] YANNICCARI M, GIGÓN R, LARSEN A. Cytochrome P450 herbicide metabolism as the main mechanism of cross-resistance to ACCase- and ALS-inhibitors in Lolium spp. populations from Argentina: a molecular approach in characterization and detection[J]. Front Plant Sci, 2020, 11: 600301. doi: 10.3389/fpls.2020.600301
    [13] DENG W, YANG M T, LI Y, et al. Enhanced metabolism confers a high level of cyhalofop-butyl resistance in a Chinese sprangletop (Leptochloa chinensis (L.) Nees) population[J]. Pest Manag Sci, 2021, 77(5): 2576-2583. doi: 10.1002/ps.6297
    [14] GUO W L, CHI Y Y, FENG L, et al. Fenoxaprop-P-ethyl and mesosulfuron-methyl resistance status of shortawn foxtail (Alopecurus aequalis Sobol.) in eastern China[J]. Pestic Biochem Physiol, 2018, 148: 126-132. doi: 10.1016/j.pestbp.2018.04.013
    [15] OWEN M J, WALSH M J, LLEWELLYN R S, et al. Widespread occurrence of multiple herbicide resistance in Western Australian annual ryegrass (Lolium rigidum) populations[J]. Aust J Agric Res, 2007, 58(7): 711-718. doi: 10.1071/AR06283
    [16] KHAMMASSI M, HAJRI H, MENCHARI Y, et al. Current status in resistance to ACCase and ALS-inhibiting herbicides in rigid ryegrass populations from cereal crops in North of Tunisia[J]. J Agric Sci, 2019, 157(9-10): 676-683. doi: 10.1017/S002185962000009X
    [17] 刘兴林, 孙涛, 付声姣, 等. 水稻田除草剂的应用及杂草抗药性现状[J]. 西北农林科技大学学报(自然科学版), 2015, 43(7): 115-126.

    LIU X L, SUN T, FU S J, et al. Herbicide application and weeds resistance in rice field in China[J]. J Northwest A&F Univ (Nat Sci Ed), 2015, 43(7): 115-126.
    [18] 马国兰, 刘都才, 刘雪源, 等. 五氟磺草胺等 6 种除草剂对直播稻田高龄稗草的生物活性及田间控制效果[J]. 植物保护, 2014, 40(3): 204-208. doi: 10.3969/j.issn.0529-1542.2014.03.040

    MA G L, LIU D C, LIU X Y, et al. Biological activity and control effect of six herbicides to large Echinochloa crusgalli (L.) Beauv. in direct-seeding rice field[J]. Plant Prot, 2014, 40(3): 204-208. doi: 10.3969/j.issn.0529-1542.2014.03.040
    [19] 袁国徽. 小麦田耿氏硬草对精噁唑禾草灵的抗性研究[D]. 泰安: 山东农业大学, 2016.

    YUAN G H. Resistance of of keng stiffgrass (Pseudosclerochloa kengiana (Ohwi) Tzvel.) to fenoxaprop-P-ethyl[D]. Taian: Shandong Agricultural University, 2016.
    [20] GRESSEL J, SEGEL L, RANSOM J K. Managing the delay of evolution of herbicide resistance in parasitic weeds[J]. Int J Pest Manag, 1996, 42(2): 113-129. doi: 10.1080/09670879609371981
    [21] DEVINE M D. Mechanisms of resistance to acetyl-coenzyme A carboxylase inhibitors: a review[J]. Pestic Sci, 1997, 51(3): 259-264. doi: 10.1002/(SICI)1096-9063(199711)51:3<259::AID-PS644>3.0.CO;2-S
    [22] HAN H P, YU Q, OWEN M J, et al. Widespread occurrence of both metabolic and target-site herbicide resistance mechanisms in Lolium rigidum populations[J]. Pest Manag Sci, 2016, 72(2): 255-263. doi: 10.1002/ps.3995
    [23] BECKIE H J, TARDIF F J. Herbicide cross resistance in weeds[J]. Crop Prot, 2012, 35: 15-28.
    [24] PENG Y J, PAN L, LIU D C, et al. Confirmation and characterization of cyhalofop-butyl–resistant Chinese sprangletop (Leptochloa chinensis) populations from China[J]. Weed Sci, 2020, 68(3): 253-259. doi: 10.1017/wsc.2020.15
    [25] 张怡, 陈丽萍, 徐笔奇, 等. 浙江稻区千金子对氰氟草酯和噁唑酰草胺的抗药性及其分子机制研究[J]. 农药学学报, 2020, 22(3): 447-453.

    ZHANG Y, CHEN L P, XU B Q, et al. Resistance of Leptochloa chinensis (L.) Nees to cyhalofop-butyl and metamifop in rice fields of Zhejiang Province and involved molecular mechanism[J]. Chin J Pestic Sci, 2020, 22(3): 447-453.
    [26] DENG W, CAI J X, ZHANG J Y, et al. Molecular basis of resistance to ACCase-inhibiting herbicide cyhalofop-butyl in Chinese sprangletop (Leptochloa chinensis (L.) Nees) from China[J]. Pestic Biochem Physiol, 2019, 158: 143-148. doi: 10.1016/j.pestbp.2019.05.004
    [27] POWLES S B, YU Q. Evolution in action: plants resistant to herbicides[J]. Annu Rev Plant Biol, 2010, 61: 317-347. doi: 10.1146/annurev-arplant-042809-112119
    [28] IWAKAMI S, UCHINO A, WATANABE H, et al. Isolation and expression of genes for acetolactate synthase and acetyl-CoA carboxylase in Echinochloa phyllopogon, a polyploid weed species[J]. Pest Manag Sci, 2012, 68(7): 1098-1106. doi: 10.1002/ps.3287
    [29] PETIT C, DUHIEU B, BOUCANSAUD K, et al. Complex genetic control of non-target-site-based resistance to herbicides inhibiting acetyl-coenzyme A carboxylase and acetolactate-synthase in Alopecurus myosuroides Huds[J]. Plant Sci, 2010, 178(6): 501-509. doi: 10.1016/j.plantsci.2010.03.007
    [30] YUAN J S, TRANEL P J, STEWART C N Jr. Non-target-site herbicide resistance: a family business[J]. Trends Plant Sci, 2007, 12(1): 6-13. doi: 10.1016/j.tplants.2006.11.001
    [31] CHEN K, PENG Y J, ZHANG L, et al. Whole transcriptome analysis resulted in the identification of Chinese sprangletop (Leptochloa chinensis) genes involved in cyhalofop-butyl tolerance[J]. BMC Genomics, 2021, 22(1): 521. doi: 10.1186/s12864-021-07856-z
  • 加载中
表(5)
计量
  • 文章访问数:  423
  • HTML全文浏览量:  132
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-22
  • 录用日期:  2022-02-07
  • 网络出版日期:  2022-03-03
  • 刊出日期:  2022-06-10

目录

    /

    返回文章
    返回