Preparation and release properties of azoxystrobin/ polyacrylonitrile microspheres
-
摘要: 采用聚丙烯腈(PAN)为原料,通过静电喷雾技术制备了载有嘧菌酯的PAN微球。研究了工作电压、嘧菌酯与PAN质量比对微球形貌与性能的影响,并通过释放试验评价了载药微球的缓释性能。结果表明:静电纺丝机的工作电压是控制微球粒径大小的主要因素,其粒径随电压增大而减小,最小可至0.86 μm,而嘧菌酯与PAN的质量比则主要影响微球的载药量与包封率,微球载药量最高可达34.53%,包封率最高可达79.78%。此外,载药微球在3种不同pH的缓冲溶液中均实现了长达400 min的稳定释放,表明其具有出色的缓释性能。在静电纺丝机工作电压15 kV、工作距离20 cm、PAN溶液质量浓度2%、m(嘧菌酯) : m(PAN) = 1 : 2 及进样速率1.25 mL/h的条件下,可制备具有良好形貌与缓释性能的嘧菌酯/PAN微球,本研究可为农药减量增效提供一种技术路径。Abstract: In this study, polyacrylonitrile (PAN) was used to prepare PAN microspheres loaded with azoxystrobin by electrostatic spraying technology. The effects of working voltage and mass ratio of azoxystrobin and PAN on the morphology and properties of microspheres were investigated. The sustained-release properties of the drug-loaded microspheres were evaluated by release tests. The results show that the working voltage of the electrospinning machine is the main factor controlling the particle size of the microspheres. The particle size decreases with the increase of the voltage and the minimum size can reach 0.86 μm. While the mass ratio of azoxystrobin and PAN mainly affected the loading capacity and encapsulation efficiency of the microspheres. The loading capacity of the microspheres can reach up to 34.53%, and the encapsulation efficiency can reach up to 79.78%. In addition, the drug-loaded microsphere achieved stable release for up to 400 min in three buffer solutions with different pH, indicating its excellent sustained-release performance. Collectively, under the condition that the working voltage of the electrospinning machine is 15 kV, the working distance is 20 cm, the mass concentration of PAN solution is 2%, m(azoxystrobin) : m (PAN) = 1 : 2 and the injection speed is 1.25 mL/h, the prepared azoxystrobin/PAN microspheres exhibited good morphology and sustained-release properties. This study provides a technical approach for pesticide reduction and efficiency enhancement.
-
Key words:
- azoxystrobin /
- polyacrylonitrile /
- electrostatic spray /
- microsphere /
- sustained release properties
-
表 1 不同pH值磷酸盐缓冲溶液的配制
Table 1. Preparation of phosphate buffer solutions with different pH
pH 体积分数 Volume ratio, V/% 0.2 mol/L KH2PO4 0.2 mol/L K2HPO4 0.1 mol/L TC 5 − 51.00 49.00 7 40.00 60.00 − 8 5.50 94.50 − 表 2 嘧菌酯与PAN质量比对载药微球的影响
Table 2. Influence of the mass ratio of azoxystrobin and polyacrylonitrile on drug-loaded microspheres
m (嘧菌酯) : m (PAN)m (azoxystrobin) : m (PAN) 直径Diameter/
µm载药量Loading
capacity/%包封率Encapsulation
efficiency/%1 : 2 0.89 ± 0.09 26.59 ± 0.36 79.78 1 : 1 0.87 ± 0.07 30.55 ± 1.34 61.10 2 : 1 0.86 ± 0.08 34.53 ± 1.31 51.79 表 3 不同剂型嘧菌酯对黄瓜炭疽病的防治效果
Table 3. Control efficacy of azoxystrobin with different formulations on cucumber anthracnose
处理
Treatment有效成分质量浓度Concentration,
a.i/(g/L)防治效果
Control efficacy/%处理后7 d7 d after
spray处理后14 d14 d after
spray清水
CK (Water)− − − 25%嘧菌酯悬浮剂
azoxystrobin 25% SC0.2 79.58 Bb 54.46 Bb 嘧菌酯/PAN微球悬浮剂
azoxystrobin/PAN microspheres SC0.2 51.19 Aa 26.36 Aa 0.3 71.12 Bb 55.41 Bb 0.4 73.48 Bb 61.08 Bb 注:表中数据后的大小写字母分别表示在5%、1%水平下的显著性差异。Note: The upper and lower case letters after the data in the table indicate significant differences at the 5% and 1% levels, respectively. -
[1] 毛连纲, 徐冬梅, 田梦倩, 等. 甲氧基丙烯酸酯类杀菌剂在我国的登记用量分析[J]. 农药, 2019, 58(12): 870-874.MAO L G, XU D M, TIAN M Q, et al. Analysis on recommended dosage of the strobilurin fungicides registered in China[J]. Agrochemicals, 2019, 58(12): 870-874. [2] 宋玉莹, 曹冲, 徐博, 等. 农药雾滴在植物叶面的弹跳行为及调控技术研究进展[J]. 农药学学报, 2019, 21(Z1): 895-907.SONG Y Y, CAO C, XU B, et al. Research progress on bouncing behavior and control technology of pesticide droplets at plant leaf surface[J]. Chin J Pestic Sci, 2019, 21(Z1): 895-907. [3] 袁会珠, 杨代斌, 闫晓静, 等. 农药有效利用率与喷雾技术优化[J]. 植物保护, 2011, 37(5): 14-20.YUAN H Z, YANG D B, YAN X J, et al. Pesticide efficiency and the way to optimize the spray application[J]. Plant Prot, 2011, 37(5): 14- 20. [4] 李勋, 韦祎, 马光辉, 等. 缓释微球制剂的研究进展[J]. 北京化工大学学报(自然科学版), 2017, 44(6): 1-11.LI X, WEI Y, MA G H, et al. Recent research and development prospects for sustained-release microspheres[J]. J Beijing Univ Chem Technol (Nat Sci Ed), 2017, 44(6): 1-11. [5] 文朝霞, 席琛, 毛肖娟. 高分子材料在农药缓释剂中的应用[J]. 材料导报, 2014, 28(19): 75-78.WEN Z X, XI C, MAO X J. Application of polymers in pesticide release[J]. Mater Rep, 2014, 28(19): 75-78. [6] 许春丽. 多功能农药载药体系设计与调控释放性能研究[D]. 北京: 中国农业科学院, 2021.XU C L. Research on the design and application of multifunctional controlled-release system of pesticide and its release performance[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. [7] ZHANG L J, BAI J, LIANG H O, et al. Preparation and characterization of polyacrylonitrile and polyacrylonitrile/β-cyclodextrins microsphere[J]. J Macromol Sci Part B Phys, 2014, 53(1): 142-148. doi: 10.1080/00222348.2013.808519 [8] 魏立明, 宋三孔, 宋霞, 等. 微球制备方法的新发展动态[J]. 中国药师, 2011, 14(11): 1682-1685. doi: 10.3969/j.issn.1008-049X.2011.11.053WEI L M, SONG S K, SONG X, et al. New developments in the preparation of microspheres[J]. China Pharm, 2011, 14(11): 1682-1685. doi: 10.3969/j.issn.1008-049X.2011.11.053 [9] 刘婷, 但卫华, 但年华, 等. 微胶囊的制备及其表征方法[J]. 材料导报, 2013, 27(21): 81-84.LIU T, DAN W H, DAN N H, et al. Preparation technology and characterization of microcapsule[J]. Mater Rep, 2013, 27(21): 81-84. [10] 韩路路, 毕良武, 赵振东, 等. 微胶囊的制备方法研究进展[J]. 生物质化学工程, 2011, 45(3): 41-46. doi: 10.3969/j.issn.1673-5854.2011.03.009HAN L L, BI L W, ZHAO Z D, et al. Advances in microcapsules preparation[J]. Biomass Chem Eng, 2011, 45(3): 41-46. doi: 10.3969/j.issn.1673-5854.2011.03.009 [11] 刘玲丽. 静电喷雾技术制备海藻酸钙栓塞微球的研究[D]. 武汉: 华中科技大学, 2019.LIU L L. Preparation of calcium alginate microspheres by an electrospraying method for chemoembolization[D]. Wuhan: Huazhong University of Science and Technology, 2019. [12] 周天水. 基于同轴电喷法制备高分子载体及其在环境与医药材料应用的研究[D]. 苏州: 苏州科技大学, 2017.ZHOU T S. Preparation of polymer carrier based on coaxial electrospraying and its application in environmental and medical materials[D]. Suzhou: Suzhou University of Science and Technology, 2017. [13] 俞若梦. 石墨烯基复合微球的制备及其在水处理和锂离子存储的应用[D]. 北京: 北京化工大学, 2018.YU R M. Preparation of graphene-based microspheres and their application in water treatment and lithium-ion batteries[D]. Beijing: Beijing University of Chemical Technology, 2018. [14] ZHENG Y K, CAO H T, ZHOU Z, et al. Concentrated multi-nozzle electrospinning[J]. Fibers Polym, 2019, 20(6): 1180-1186. [15] GUARINO V, ALTOBELLI R, CIRILLO V, et al. Additive electrospraying: a route to process electrospun scaffolds for controlled molecular release[J]. Polym Adv Technol, 2015, 26(12): 1359-1369. [16] SUN Z M, Li M M, Jin Z X, et al. Starch-graft-polyacrylonitrile nanofibers by electrospinning[J]. Int J Biol Macromol, 2018, 120: 2552-2559. doi: 10.1016/j.ijbiomac.2018.09.031 [17] CAO X, DAI L J, Sun S C. et al. Preparation and performance of porous hydroxyapatite/poly(lactic-co-glycolic acid) drug-loaded microsphere scaffolds for gentamicin sulfate delivery[J]. J Mater Sci, 2021, 56(27): 15278-15298. doi: 10.1007/s10853-021-06183-8 [18] 马骊娜, 方大为, 王克敏, 等. 静电喷雾法制备壳聚糖/康普瑞丁载药微球[J]. 材料科学与工程学报, 2015(6): 889-894.MA L N, FANG D W, WANG K M, et al. Preparation and characterization of hydrophobic drug combretastatin A4-loaded chitosan microspheres by electrospraying[J]. J Mater Sci Eng, 2015(6): 889-894. [19] 张永芝, 李晓瑞, 王旭, 等. 5种杀菌剂对黄瓜白粉病室内毒力测定及田间药效[J]. 农药, 2019, 58(8): 610-611.ZHANG Y Z, LI X R, WANG X, et al. The toxicity and effects of five fungicides against cucumber powdery mildew[J]. Agrochemicals, 2019, 58(8): 610-611. [20] 吉春明, 刘建凤, 苏建坤, 等. 防治黄瓜霜霉病有效药剂筛选及药效评价[J]. 天津农业科学, 2015, 21(12): 114-117. doi: 10.3969/j.issn.1006-6500.2015.12.028JI C M, LIU J F, SU J K, et al. Evaluation of fungicides for controlling cucumber downy mildew by Pseudoperonospora cubensis[J]. Tianjin Agric Sci, 2015, 21(12): 114-117. doi: 10.3969/j.issn.1006-6500.2015.12.028 -