• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双唑草腈对3种水生生物的急性毒性及初级生态风险评估

孔玄庆 蒋煜 罗泽伟 喻快 成淑芬 欧阳文森 李建明 金晨钟 欧晓明

孔玄庆, 蒋煜, 罗泽伟, 喻快, 成淑芬, 欧阳文森, 李建明, 金晨钟, 欧晓明. 双唑草腈对3种水生生物的急性毒性及初级生态风险评估[J]. 农药学学报, 2022, 24(3): 581-590. doi: 10.16801/j.issn.1008-7303.2022.0037
引用本文: 孔玄庆, 蒋煜, 罗泽伟, 喻快, 成淑芬, 欧阳文森, 李建明, 金晨钟, 欧晓明. 双唑草腈对3种水生生物的急性毒性及初级生态风险评估[J]. 农药学学报, 2022, 24(3): 581-590. doi: 10.16801/j.issn.1008-7303.2022.0037
KONG Xuanqing, JIANG Yu, LUO Zewei, YU Kuai, CHENG Shufen, OUYANG Wensen, LI Jianming, JIN Chenzhong, OU Xiaoming. Acute toxicities of pyraclonil to three aquatic organisms and its primary ecological risk assessment[J]. Chinese Journal of Pesticide Science, 2022, 24(3): 581-590. doi: 10.16801/j.issn.1008-7303.2022.0037
Citation: KONG Xuanqing, JIANG Yu, LUO Zewei, YU Kuai, CHENG Shufen, OUYANG Wensen, LI Jianming, JIN Chenzhong, OU Xiaoming. Acute toxicities of pyraclonil to three aquatic organisms and its primary ecological risk assessment[J]. Chinese Journal of Pesticide Science, 2022, 24(3): 581-590. doi: 10.16801/j.issn.1008-7303.2022.0037

双唑草腈对3种水生生物的急性毒性及初级生态风险评估

doi: 10.16801/j.issn.1008-7303.2022.0037
详细信息
    作者简介:

    孔玄庆,731815254@qq.com

    通讯作者:

    欧晓明,xmouhn@163.com

  • 中图分类号: TQ450.26;S482.4

Acute toxicities of pyraclonil to three aquatic organisms and its primary ecological risk assessment

  • 摘要: 为研究双唑草腈对水生生物的毒性和水体环境风险,在实验室条件下,以斜生栅藻、大型溞和斑马鱼为研究对象,分别采用OECD推荐的生长抑制法、活动抑制法、静态法和TOP-RICE模型,开展了双唑草腈的急性毒性试验和初级生态风险评估。结果表明:双唑草腈对斜生栅藻细胞增殖的72 h半数抑制效应浓度 (72 h-EC50) 为1.44 × 10−2 mg/L,对大型溞活动的48 h半数抑制效应浓度 (48 h-EC50) 为15.09 mg/L,对斑马鱼的96 h半数致死效应浓度 (96 h-LC50) 为23.05 mg/L,根据我国《化学农药环境安全评价实验准则》中的毒性等级划分标准,相应毒性等级分别为高毒、低毒和低毒;在水生生态系统中,双唑草腈对脊椎动物和无脊椎动物的急性毒性风险商(RQ) 值小于1的分组占所有模拟场景的60%以上,超过60% 的分组对初级生产者的RQ值大于1,说明双唑草腈对大型溞和斑马鱼较为安全,对水生生态系统中脊椎动物和无脊椎动物的风险在可接受范围,但其对斜生栅藻毒性高,且对初级生产者的风险为不可接受。因此,生产中在施用双唑草腈时应避免药剂进入稻田周边水体,可通过减少农药使用量、合理调整施药时期等方法来减少双唑草腈对水生生态环境的风险,建议在早稻分蘖前期和晚稻分蘖后期使用。
  • 图  1  大型溞试验中双唑草腈为20.7 mg/L 时的 色谱图 (48 h)

    Figure  1.  Liquid chromatogram of pyraclonil with 20.7 mg/L in the acute toxicity test of D. magna (48 h)

    图  2  不同场景点双唑草腈的预测环境浓度

    注:TWA 表示时间加权平均值。

    Figure  2.  PEC of pyraclonil under different scenarios

    Note: TWA means time weighted average.

    图  3  不同预测环境浓度下双唑草腈对3种水生生物的风险商

    Figure  3.  RQs of pyraclonil to D. magna, B. rerio and S. obliquus under different PECs

    表  1  各试验体系中双唑草腈的实测浓度

    Table  1.   Measured concentrations of pyraclonil in each test system

    供试生物Test
    organism
    暴露浓度Exposure conc./
    (mg/L)
    实测浓度
    Measured conc./(mg/L)
    浓度变化率bRate of conc.
    changeb/%
    0 h48 h/72 h/96 ha
    斜生栅藻
    S. obliquus
    CK000
    1.00 × 10−29.00 × 10−39.40 × 10−3−4.44
    1.20 × 10−21.02 × 10−21.01 × 10−20.98
    1.44 × 10−21.49 × 10−21.45 × 10−22.55
    1.73 × 10−21.74 × 10−21.61 × 10−27.47
    2.07 × 10−21.97 × 10−21.71 × 10−213.20
    2.49 × 10−22.41 × 10−22.47 × 10−2−2.49
    大型溞
    D. magna
    CK000
    109.899.315.86
    1211.7711.78−0.08
    14.414.5314.023.51
    17.317.2017.011.10
    20.720.8120.163.12
    斑马鱼
    B. rerio
    CK000
    1514.9814.013.14
    1817.7217.441.58
    21.621.7520.137.45
    25.925.6825.97−1.13
    31.130.0129.172.80
    注:a48 h为大型溞毒性试验结束时的实测浓度,72 h为斜生栅藻毒性试验结束时的实测浓度,96 h为斑马鱼毒性试验结束时的实测浓度;b浓度变化率 (%):[(试验结束时的实测浓度–0 h实测浓度)/0 h实测浓度] × 100。Note: a48 h indicates the measured concentration at the end of D. magna toxicity test, 72 h indicates the measured concentration at the end of the toxicity test of S. obliquus, 96 h indicates the measured concentration at the end of B. rerio toxicity test; bRate of concentration change (%): [(measured concentration at the end of toxicity test – 0 h-measured concentration)/0 h-measured concentration] × 100.
    下载: 导出CSV

    表  2  双唑草腈对斜生栅藻、大型溞和斑马鱼和的急性毒性

    Table  2.   The acute toxicity of pyraclonil to S. obliquus, D. magna and B. rerio

    供试生物
    Test organism
    暴露时间
    Exposure time/h
    回归方程Regression equation
    R2LC50 or EC50/
    (mg/L)
    95% 置信区间
    95% CL/(mg/L)
    斜生栅藻
    S. obliquus
    24 y = 2.806x + 4.660 0.832 2.18 × 10−2 1.78 × 10−2 ~ 3.81 × 10−2
    48 y = 4.011x + 7.234 0.975 1.57 × 10−2 1.48 × 10−2 ~ 1.67 × 10−2
    72 y = 5.225x + 9.625 0.981 1.44 × 10−2 1.37 × 10−2 ~ 1.51 × 10−2
    大型溞
    D. magna
    24 y = 7.096x − 9.001 0.999 18.55 17.26 ~ 20.54
    48 y = 8.983x − 10.589 0.984 15.09 14.30 ~ 15.97
    斑马鱼
    B. rerio
    24*
    48 y = 6.873x − 9.497 0.978 24.09 21.04 ~ 29.34
    72 y = 7.197x − 9.783 0.986 23.05 20.13 ~ 27.17
    96 y = 7.197x − 9.783 0.986 23.05 20.13 ~ 27.17
    注:*因死亡率远低于50%而未进行数据分析。Note: *Data analysis was not performed because the mortality rate was much lower than 50%.
    下载: 导出CSV

    表  3  双唑草腈的理化性质及环境归趋数据

    Table  3.   Physicochemical properties and environmental fate data of pyraclonil

    参数名称             
    Parameter name             
    数据
    Data
    数据来源
    Data source
    模型最终输入值
    Final input value
    辛醇/水分配系数 log Kow,pH = 7,20 ℃ 1.61 [19] 1.61
    摩尔分子量 Molar mass/(g/mol),20 ℃ 314.77 [19] 314.77
    饱和蒸气压 Saturated vapor pressure/Pa,25 ℃ 1.9 × 10−7 [3] 1.9 × 10−7 a
    1.9 × 10−7 [20]
    水中溶解度 Solubility in water/(mg/L),20 ℃ 50.1 [3] 50.1 a
    50.1 [20]
    土壤吸附系数 Soil adsorption coefficient,Koc/(L/kg),20 ℃ 243 [21] 243
    Freundlich 吸附指数 Freundlich sorption exponent,1/n 0.852 [21] 0.852
    土壤降解半衰期 (好氧) Soil degradation half-life (aerobic)/d,25 ℃ 6.8~8.2 [22] 8.2 b
    土壤降解半衰期(厌氧) Soil degradation half-life (anaerobic)/d,25 ℃ 131~139 [22] 139 b
    水解半衰期 Hydrolysis half-life/d,25℃ >365 [20] 1000 c
    >365 [21]
    每日允许摄入量 ADI/(mg/kg bw) 0.0044 [22] 0.0044
    注:a有2 个及以上数据相同时,选出现最多的数据作为模型输入值;b遵循风险最大化原则,取半衰期最大值;c取默认值,温度默认为20 ℃。Note: a If two or more data are the same, the most frequent data was selected as the final input value;b Following the principle of risk maximization, the longest degradation half-life was chosen; c The default value and default temperature (20 ℃).
    下载: 导出CSV

    表  4  双唑草腈的急性毒性数据

    Table  4.   Acute toxicity data of pyraclonil

    生物类型      
    Biological type      
    物种
    Specie
    不确定性因子
    UF
    预测无效应浓度
    PNEC/(μg/L)
    初级生产者
    Primary producer
    斜生栅藻
    S. obliquus
    10 1.44
    无脊椎动物
    Invertebrate
    大型溞
    D. magna
    100 150.9
    脊椎动物
    Vertebrate
    斑马鱼
    B. rerio
    100 230.5
    下载: 导出CSV

    表  5  不同预测环境浓度下双唑草腈RQ < 1的占比分布

    Table  5.   Proportion of RQ < 1 of pyraclonil to organisms under different PECs %

    物种
    Specie
    场景
    Scenario
    预测环境浓度
    PEC
    地表径流
    Runoff
    池塘水
    Pond
    时间加权
    TWA
    斜生栅藻
    S. obliquus
    连平-早稻 Lianping- early rice 0.00 0.00 0.00
    连平-晚稻 Lianping-late rice 26.09 21.74 26.09
    南昌-早稻 Nanchang-early rice 5.00 5.00 5.00
    南昌-晚稻 Nanchang-late rice 43.48 43.48 43.48
    大型溞
    D. magna
    连平-早稻 Lianping-early rice 33.33 100.00 100.00
    连平-晚稻 Lianping-late rice 69.57 100.00 100.00
    南昌-早稻 Nanchang-early rice 60.00 100.00 100.00
    南昌-晚稻 Nanchang-late rice 86.96 100.00 100.00
    斑马鱼
    B. rerio
    连平-早稻 Lianping-early rice 42.86 100.00 100.00
    连平-晚稻 Lianping-late rice 78.26 100.00 100.00
    南昌-早稻 Nanchang-early rice 75.00 100.00 100.00
    南昌-晚稻 Nanchang-late rice 95.65 100.00 100.00
    下载: 导出CSV

    表  6  不同预测环境浓度下双唑草腈的风险商值分析

    Table  6.   Analysis of RQs under different PECs

    物种
    Specie
    类别
    Different category
    风险商 RQ
    平均值
    Mean
    第 60 百分位数
    60th Quantile
    最大值
    Maximum
    最小值
    Minimum
    斜生栅藻
    S. obliquus
    地表径流 Runoff 143.09 97.24 618.52 0
    池塘水 Pond 28.22 35.72 84.39 1.39 × 10−6
    时间加权 TWA 26.29 35.02 82.85 0
    大型溞
    D. magna
    地表径流 Runoff 1.37 0.9280 5.90 0
    池塘水 Pond 0.27 0.3409 0.81 1.33 × 10−8
    时间加权 TWA 0.25 0.3345 0.80 0
    斑马鱼
    B. rerio
    地表径流 Runoff 0.89 0.6075 3.86 0
    池塘水 Pond 0.18 0.2232 0.53 8.68 × 10−9
    时间加权 TWA 0.16 0.2186 0.51 0
    下载: 导出CSV
  • [1] 牛立志, 桂文君, 朱国念. 草铵膦在水中的降解特性及对水生生物的毒性[J]. 浙江农业学报, 2010, 22(4): 485-490.

    NIU L Z, GUI W J, ZHU G N. The degradation of glufosinate in water and toxicity to aquatic organism[J] Acta Agric Zhejiangensis, 2010, 22(4): 485-490.
    [2] 单正军, 陈祖义. 农药对水生生物的污染影响及污染控制技术[J]. 农药科学与管理, 2007, 28(10): 18-20. doi: 10.3969/j.issn.1002-5480.2007.10.006

    SHAN Z J, CHEN Z Y. Pollution effects of pesticides on aquatic organisms and pollution control technology[J]. Pestic Sci Adm, 2007, 28(10): 18-20. doi: 10.3969/j.issn.1002-5480.2007.10.006
    [3] 张一宾. 水稻田用除草剂双唑草腈 (pyraclonil) 的研发及其应用普及[J]. 世界农药, 2014, 36(6): 1-3.

    ZHANG Y B. Development and application of pyraclonil in paddy field[J]. World Pestic, 2014, 36(6): 1-3.
    [4] 徐蓬, 吴佳文, 王红春, 等. 双唑草腈的除草活性及对水稻的安全性[J]. 植物保护, 2017, 43(5): 198-204. doi: 10.3969/j.issn.0529-1542.2017.05.033

    XU P, WU J W, WANG H C, et al. Herbicidal activity of pyraclonil to the weeds in rice fields and its safety to rice[J]. Plant Prot, 2017, 43(5): 198-204. doi: 10.3969/j.issn.0529-1542.2017.05.033
    [5] 田志慧, 袁国徽, 沈国辉. 双唑草腈防除直播稻田杂草效果及其对水稻安全性研究[J]. 上海农业学报, 2021, 37(1): 76-81.

    TIAN Z H, YUAN G H, SHEN G H. Control effects and safety of pyraclonil on weeds in direct seeding rice fields[J]. Acta Agric Shanghai, 2021, 37(1): 76-81.
    [6] 张月, 李卫, 周雯雯, 等. 双唑草腈在 3 种典型土壤中的降解[J]. 农药学学报, 2020, 22(5): 897-902.

    ZHANG Y, LI W, ZHOU W W, et al. Degradation of pyraclonil in three typical soils[J]. Chin J Pestic Sci, 2020, 22(5): 897-902.
    [7] 张月, 周雯雯, 贾浩然, 等. 双唑草腈在 7 种土壤中的淋溶特性[J]. 农药, 2019, 58(12): 893-897.

    ZHANG Y, ZHOU W W, JIA H R, et al. Leaching characteristics of pyraclonil in seven soils[J]. Agrochemicals, 2019, 58(12): 893-897.
    [8] 孔玄庆, 欧晓明, 金晨钟, 等. 双唑草腈对非洲爪蟾蝌蚪和胚胎的影响[J]. 农药, 2018, 57(7): 503-505.

    KONG X Q, OU X M, JIN C Z, et al. Effects of pyraclonil on Xenopus leavis tadpoles and embryos[J]. Agrochemicals, 2018, 57(7): 503-505.
    [9] TAKASHI N, KIYOSHI T, IKUKO Y. Comparative toxicity of 20 herbicides to 5 periphytic algae and the relationship with mode of action[J]. Environ Toxicol Chem, 2016, 35(2): 368-375. doi: 10.1002/etc.3150
    [10] OECD. Method 201 guidelines for testing of chemicals: freshwater alga and cyanobacteria, growth inhibition test [S]. Paris: Environment Health and Safety Publication, 2011.
    [11] OECD. Method 202 guidelines for testing of chemicals: Daphnia sp. , acute immobilization test [S]. Paris: Environment Health and Safety Publication, 2004.
    [12] OECD. Method 203 guidelines for testing of chemicals: fish, acute toxicity test [S]. Paris: Environment Health and Safety Publication, 1992.
    [13] 中国农业农村部农药检定所. TOP-RICE模型操作手册[Z]. 北京: 中国农业农村部农药检定所, 2014.

    Top-rice model operation manual[Z]. Beijing: ICAMA, 2014.
    [14] 毛连纲, 周艳明, 张兰, 等. 基于 TOP-RICE 模型嘧菌酯·噻呋酰胺 4% 展膜油剂稻田水溢出对水生生态系统风险评估研究[J]. 生态毒理学报, 2017, 12(4): 153-163.

    MAO L G, ZHOU Y M, ZHANG L, et al. Risk assessment of azoxystrobin·thifluzamide 4% spreading oil water overflow in rice paddies on aquatic ecosystem based on TOP-RICE model[J]. Asian J Ecotoxicol, 2017, 12(4): 153-163.
    [15] 农药登记环境风险评估指南 第 2 部分: 水生生态系统: NY/T 2882.2—2016[S]. 北京: 中国农业出版社, 2016.

    Guidance on environmental risk assessment for pesticide registration, part 2: aquatic ecosystem: NY/T 2882.2—2016[S]. Beijing: Chinese Agriculture Press, 2016.
    [16] 钱传范. 农药残留分析原理与方法[M]. 北京: 化学工业出版社, 2011.

    QIAN C F. Principle and method of pesticide residue analysis[M]. Beijing: Chemical Industry Press, 2011.
    [17] 化学农药环境安全评价试验准则: GB/T 31270[S]. 北京: 中国标准出版社, 2014.

    Experimental guideline for environmental safety evaluation of chemical pesticid: GB/T 31270[S]. Beijing: Standards Press of China, 2014.
    [18] 中国农药信息网[EB/OL]. [2021-04-23]. http://www.icama.org.cn/hysj/index.jhtml.

    China Pesticide Information Network[EB/OL]. [2021-04-23]. http://www.icama.org.cn/hysj/index.jhtml.
    [19] University of Hertfordshire. The PPDB (Pesticide Properties Database): IUPAC, global availability of information on agrochemicals [DB/OL]. [2021-03-03]. http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/1166.htm
    [20] 日本环境省. 水産動植物の被害防止に係る農薬登録保留基準の設定に関する資料 (ピラクロニル)[DB/OL]. [2006-06-29]. https://www.env.go.jp/water/sui-kaitei/kijun/rv/h02_pyraclonil.pdf

    Ministry of the Environment Government of Japan. Data on the establishment of standards for retention of agricultural chemicals for prevention of damage to aquatic animals and plants (pyraconil)[DB/OL]. [2006-06-29]. https://www.env.go.jp/water/sui-kaitei/kijun/rv/h02_pyraclonil.pdf
    [21] 農林水産消費安全技術センター(FAMIC). ピラクロニル農薬抄録[DB/OL]. [2012-09-15]. http://www.acis.famic.go.jp/syouroku/ pyraclonil/index.htm

    Food and Agricultural Materials Inspection Center (FAMIC). Pyraconil pesticides abstract[DB/OL]. [2012-09-15]. http://www. acis.famic.go.jp/syouroku/pyraclonil/index.htm
    [22] 日本食品安全委员会. 第 71 回農薬専門調査会幹事会 ピラクロニル評価書, 第 2 版 [DB/OL]. [2011-04-15]. http://www.fsc.go.jp/ fsciis/evaluationDocument/show/kya20100618447.

    Food Safety Commission of Japan. The 71st report to the secretary's meeting pyraconil of the agricultural door investigation committee, version 2 [DB/OL ]. [2011-04-15]. http://www.fsc.go.jp/fsciis/evaluationDocument/show/kya20100618447.
    [23] 瞿晶菁, 刘春霞, 付少华, 等. 双唑草腈原药大鼠亚慢性毒性试验[J]. 毒理学杂志, 2015, 29(2): 158-160.

    QU J J, LIU C X, FU S H, et al. Subchronic toxicity test of pyraconil in rats[J]. J Toxicol, 2015, 29(2): 158-160.
    [24] 农业农村部农药检定所. 农药登记环境风险评估指南[M]. 北京: 中国农业出版社, 2018.

    Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs. Guidance on environmental risk assessment for pesticide registration[M]. Beijing: Chinese Agriculture Press, 2018.
    [25] 林绿, 覃志豪, 李文娟. 我国农药地下水环境风险评估场景体系的建立[J]. 农业环境科学学报, 2014, 33(11): 2194-2203. doi: 10.11654/jaes.2014.11.018

    LIN L, QIN Z H, LI W J. Development of a GIS-based scenario analysis system for pesticide groundwater risk assessment in China[J]. J Agro Environ Sci, 2014, 33(11): 2194-2203. doi: 10.11654/jaes.2014.11.018
  • 加载中
图(3) / 表(6)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  27
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-28
  • 录用日期:  2022-03-17
  • 网络出版日期:  2022-05-11
  • 刊出日期:  2022-06-10

目录

    /

    返回文章
    返回