• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

五种杀菌剂在水稻上的吸收与传导性能研究

张硕佳 王超杰 徐博 冉刚超 曹立冬 曹冲 黄啟良 朱峰 赵鹏跃

张硕佳, 王超杰, 徐博, 冉刚超, 曹立冬, 曹冲, 黄啟良, 朱峰, 赵鹏跃. 五种杀菌剂在水稻上的吸收与传导性能研究[J]. 农药学学报, 2022, 24(4): 752-761. doi: 10.16801/j.issn.1008-7303.2022.0042
引用本文: 张硕佳, 王超杰, 徐博, 冉刚超, 曹立冬, 曹冲, 黄啟良, 朱峰, 赵鹏跃. 五种杀菌剂在水稻上的吸收与传导性能研究[J]. 农药学学报, 2022, 24(4): 752-761. doi: 10.16801/j.issn.1008-7303.2022.0042
ZHANG Shuojia, WANG Chaojie, XU Bo, RAN Gangchao, CAO Lidong, CAO Chong, HUANG Qiliang, ZHU Feng, ZHAO Pengyue. Study on uptake and translocation of five fungicides in rice[J]. Chinese Journal of Pesticide Science, 2022, 24(4): 752-761. doi: 10.16801/j.issn.1008-7303.2022.0042
Citation: ZHANG Shuojia, WANG Chaojie, XU Bo, RAN Gangchao, CAO Lidong, CAO Chong, HUANG Qiliang, ZHU Feng, ZHAO Pengyue. Study on uptake and translocation of five fungicides in rice[J]. Chinese Journal of Pesticide Science, 2022, 24(4): 752-761. doi: 10.16801/j.issn.1008-7303.2022.0042

五种杀菌剂在水稻上的吸收与传导性能研究

doi: 10.16801/j.issn.1008-7303.2022.0042
基金项目: 国家重点研发计划 (2019YFD1002103);江苏省重点研发计划 (现代农业) 项目 (BE2021303).
详细信息
    作者简介:

    张硕佳,shuojiaz@163.com

    通讯作者:

    赵鹏跃,zhaopengyue@caas.cn

    朱峰,gzzbszf@163.com

  • 中图分类号: S481;S435.11

Study on uptake and translocation of five fungicides in rice

Funds: the National Key Research and Development Program of China (2019YFD1002103); Key Research Development Program of Jiangsu Province (BE2021303).
  • 摘要: 茎叶喷雾是当前化学农药最常用的施药方式,但是存在着农药蒸发飘移、弹跳碎裂、因过度铺展而脱靶流失等缺陷,导致农药利用率低。通过研究农药在植物体内的吸收及传导性能,选择合适的农药研发根部施药的剂型与技术,能够降低环境因素对农药有效成分的不利影响,并通过农药的缓慢释放与剂量调控维持更长时间的药效,从而有效提高农药利用率。本研究以室内营养土和营养液两种模式培育的水稻为模式作物,研究了三环唑、噻呋酰胺、己唑醇、氟环唑和嘧菌酯5种不同类型的杀菌剂在水稻苗期植株中的吸收与传导行为。结果表明,这5种杀菌剂均可以被水稻幼苗根系吸收并向上传导,但效率存在差异。在营养土和营养液培养条件下,水稻幼苗根部的三环唑含量在4 h~2 d内明显高于茎叶部,施药5 d后三环唑在水稻中的转运因子值均大于1,说明三环唑具有良好的向上传输性能,而其他农药向上传输的能力较差。相比其他4种农药,三环唑更适合加工成根部施用的剂型,更易于通过水稻根部吸收后向上传输与分布,以有效防控茎叶部病害。该结果可为根部施用的药剂研发提供思路,为农药根部施药技术的发展提供指导。
  • 图  1  杀菌剂标准溶液的总离子流图

    (a) 三环唑; (b) 噻呋酰胺; (c) 己唑醇; (d) 氟环唑; (e) 嘧菌酯。质量浓度均为0.0625 mg/L。

    Figure  1.  Total ion flow diagrams of fungicide standard solutions

    (a) tricyclazole; (b) thifluzamide; (c) hexaconazole; (d) epoxiconazole; (e) azoxystrobin. The concentrations were 0.0625 mg/L.

    图  2  营养土栽培条件下,根部施药后水稻茎叶部和根部中的杀菌剂含量

    Figure  2.  Fungicide dose distributions in rice aerial portions and roots after root application under soil cultivation

    图  3  营养液培养条件下,根部施药后水稻茎叶部和根部中的杀菌剂含量

    Figure  3.  Fungicide dose distributions in rice aerial portions and roots after root application under nutrient solution cultivation

    表  1  5种杀菌剂悬浮剂制备配方

    Table  1.   Formulations of five fungicides SC

    成分
    Composition
    质量分数
    Mass fraction/%
    40% 三环唑悬浮剂
    tricyclazole
    40% SC
    24% 噻呋酰胺悬浮剂
    thifluzamide
    24% SC
    30% 己唑醇悬浮剂
    hexaconazole
    30% SC
    25% 氟环唑悬浮剂
    epoxiconazole
    25% SC
    25% 嘧菌酯悬浮剂
    azoxystrobin
    25% SC
    原药 TC 42.1 25.2 31.2 26.3 25.5
    Dispersogen LFS 2.9 3
    ATLOX4919-LQ-(AP) 1 1.1
    SP-SC29 2.1 2.1
    SP-27001 3.2 3
    农乳 602 号 Pesticide emulsifier 602# 2.9
    BY-140 2.8
    丙二醇 Propylene glycol 5 5 4
    乙二醇 Ethanediol 3.9 4
    硅酸镁铝 Magnesium aluminium silicate 1 1 0.5 1.1 0.5
    消泡剂 622 Antifoamer 622 0.5 0.5 0.5
    有机硅消泡剂 Organic silicon defoamer 0.5 0.5
    4% 黄原胶 4% Xanthan gum 4 4.1 6.5 5.4
    多聚甲醛 Paraformaldehyde 4
    超纯水 Ultrapure water 43.5 60.1 52.1 61.4 59
    下载: 导出CSV

    表  2  5种杀菌剂的质谱参数

    Table  2.   Mass spectrum parameters of five fungicides

    杀菌剂 
    Fungicide 
    定量离子
    Quantification ions, m/z
    定性离子
    Qualifying ions, m/z
    去簇电压
    Declustering potential/V
    碰撞能量
    Collision energy/V
    离子源模式
    Ionization mode
    三环唑 tricyclazole 190.0/136.0 190.0/109.0 128; 129 39; 47 +
    噻呋酰胺 thifluzamide 526.8/166.0 526.8/125.0 109; 110 31; 78
    己唑醇 hexaconazole 314.1/175.0 314.1/158.9 156; 114 35; 41 +
    氟环唑 epoxiconazole 330.3/121.1 330.3/101.1 134; 171 33; 36 +
    嘧菌酯 azoxystrobin 404.1/372.0 404.1/344.1 141; 123 22; 35 +
    下载: 导出CSV

    表  3  5种杀菌剂在水稻茎叶部和根部基质中的线性方程与决定系数

    Table  3.   Linear equations and determination coefficients of five fungicides in stem, leaves and roots

    杀菌剂
    Fungicide
    基质
    Matrix
    线性方程
    Linear equation
    决定系数
    Coefficients of
    determination, R2
    三环唑
    tricyclazole
    茎叶部
    Stem and leaf
    y = 3972523x + 184800 0.9992
    根部
    Root
    y = 4417624x + 256379 0.9980
    噻呋酰胺
    thifluzamide
    茎叶部
    Stem and leaf
    y = 410662x + 57871 0.9914
    根部
    Root
    y = 462758x + 4116 1.000
    己唑醇
    hexaconazole
    茎叶部
    Stem and leaf
    y = 18446x + 326 1.000
    根部
    Root
    y = 14522x + 448 0.9998
    氟环唑
    epoxiconazole
    茎叶部
    Stem and leaf
    y = 1319766x − 44631 0.9973
    根部
    Root
    y = 1337478x − 39686 0.9978
    嘧菌酯
    azoxystrobin
    茎叶部
    Stem and leaf
    y = 1474890x + 109936 0.9969
    根部
    Root
    y = 1449690x + 50281 0.9998
    下载: 导出CSV

    表  4  5种杀菌剂在水稻茎叶部和根部基质中的添加回收率、相对标准偏差 (RSD) 及定量限 (LOQ)

    Table  4.   Recoveries, relative standard deviations (RSD), and limits of quantitation (LOQ) of five fungicides in rice aerial portions and roots

    杀菌剂
    Fungicide
    基质
    Matrix
    添加水平
    Fortified level/(mg/kg)
    平均回收率
    Average recovery/%
    相对标准偏差
    Relative standard deviation/%
    定量限
    Limits of quantitation/(mg/kg)
    三环唑
    tricyclazole
    茎叶部
    Stem and leaf
    5 99 7.6 0.001
    100 102 4.5
    1000 105 0.73
    根部
    Root
    10 102 4.5 0.001
    50 99 1.9
    500 102 2.8
    噻呋酰胺
    thifluzamide
    茎叶部
    Stem and leaf
    0.5 110 5.2 0.010
    10 94 7.4
    100 111 1.4
    根部
    Root
    0.2 82 5.5 0.001
    20 101 7.3
    200 104 1.7
    己唑醇
    hexaconazole
    茎叶部
    Stem and leaf
    0.1 113 7.0 0.001
    10 109 1.3
    210 100 2.6
    根部
    Root
    0.2 99 4.8 0.001
    20 104 1.6
    420 107 3.0
    氟环唑
    epoxiconazole
    茎叶部
    Stem and leaf
    0.05 84 2.2 0.010
    1 106 1.5
    100 117 1.1
    根部
    Root
    0.1 102 1.8 0.001
    2 108 1.3
    200 106 3.0
    嘧菌酯
    azoxystrobin
    茎叶部
    Stem and leaf
    1 104 0.73 0.001
    10 107 1.1
    300 114 3.1
    根部
    Root
    2 108 2.2 0.001
    20 106 1.5
    600 105 1.3
    下载: 导出CSV

    表  5  5种杀菌剂在水稻上的转运因子TF值

    Table  5.   TF values of five pesticides in rice

    杀菌剂
    Fungicide 
    培养方式
    Cultivation pattern
    培养时间
    Cultivation time
    4 h1 d2 d3 d5 d7 d10 d14 d
    三环唑
    tricyclazole
    营养土 Nutrient soil 0.31 0.40 0.44 0.95 1.30 1.61 1.93
    营养液 Nutrient solution 0.25 0.60 0.89 0.98 2.09 1.99 1.80
    噻呋酰胺
    thifluzamide
    营养土 Nutrient soil 0.24 0.08 0.11 0.18 0.42 0.35 0.45
    营养液 Nutrient solution 0.33 0.66 0.49 0.75 0.60 0.47 0.34 0.29
    己唑醇
    hexaconazole
    营养土 Nutrient soil 0.07 0.12 0.15 0.06 0.08 0.11 0.10 0.15
    营养液 Nutrient solution 0.07 0.16 0.17 0.25 0.39 0.50 0.54 1.01
    氟环唑
    epoxiconazole
    营养土 Nutrient soil 0.03 0.03 0.14 0.25 0.11 0.15 0.10
    营养液 Nutrient solution 0.10 0.14 0.19 0.24 0.51 0.50 0.72 1.00
    嘧菌酯
    azoxystrobin
    营养土 Nutrient soil 0.04 0.11 0.23 0.26 0.34 0.25 0.42 0.29
    营养液 Nutrient solution 0.13 0.44 0.38 0.34 0.53 0.41 0.47 0.53
    注:表中加粗数值为TF≥1。Note: Bold values in the table are TF≥1.
    下载: 导出CSV
  • [1] 高杜娟, 唐善军, 陈友德, 等. 水稻主要病害生物防治的研究进展[J]. 中国农学通报, 2019, 35(26): 140-147. doi: 10.11924/j.issn.1000-6850.casb18040057

    GAO D J, TANG S J, CHEN Y D, et al. Biological control of major rice diseases: a review[J]. Chin Agric Sci Bull, 2019, 35(26): 140-147. doi: 10.11924/j.issn.1000-6850.casb18040057
    [2] 温小红, 谢明杰, 姜健, 等. 水稻稻瘟病防治方法研究进展[J]. 中国农学通报, 2013, 29(3): 190-195. doi: 10.3969/j.issn.1000-6850.2013.03.038

    WEN X H, XIE M J, JIANG J, et al. Advances in research on control method of rice blast[J]. Chin Agric Sci Bull, 2013, 29(3): 190-195. doi: 10.3969/j.issn.1000-6850.2013.03.038
    [3] 宋玉莹, 曹冲, 徐博, 等. 农药雾滴在植物叶面的弹跳行为及调控技术研究进展[J]. 农药学学报, 2019, 21(Z1): 895-907.

    SONG Y Y, CAO C, XU B, et al. Research progress on bouncing behavior and control technology of pesticide droplets at plant leaf surface [J]. Chin J Pestic Sci, 2019, 21(Z1): 895-907.
    [4] FADEL SARTORI F, FLORIANO PIMPINATO R, TORNISIELO V L, et al. Soybean seed treatment: how do fungicides translocate in plants?[J]. Pest Manag Sci, 2020, 76(7): 2355-2359. doi: 10.1002/ps.5771
    [5] WANG W F, WAN Q, LI Y X, et al. Uptake, translocation and subcellular distribution of pesticides in Chinese cabbage (Brassica rapa var. chinensis)[J]. Ecotoxicol Environ Saf, 2019, 183: 109488. doi: 10.1016/j.ecoenv.2019.109488
    [6] 刘婷婷, 刘尚可, 李北兴, 等. 农药在植物中的内吸和传导行为与施药技术研究进展[J]. 农药学学报, 2021, 23(4): 607-616.

    LIU T T, LIU S K, LI B X, et al. Review on uptake and translocation behaviors of pesticides in plants and application technologies of pesticides[J]. Chin J Pestic Sci, 2021, 23(4): 607-616.
    [7] HAN Y, JIN H S, GUO W, et al. Translocation and distribution of imidacloprid in tobacco with two application methods[J]. Agric Sci Technol, 2017, 18(2): 344-346,376.
    [8] GAO Y Z, ZHU L Z. Phytoremediation and its models for organic contaminated soils[J]. J Environ Sci, 2003, 15(3): 302-310.
    [9] ZHANG Y, LIANG Q, GAO R T, et al. Contamination of phthalate esters (PAEs) in typical wastewater-irrigated agricultural soils in Hebei, North China[J]. PLoS One, 2015, 10(9): e0137998. doi: 10.1371/journal.pone.0137998
    [10] DETTENMAIER E M, DOUCETTE W J, BUGBEE B. Chemical hydrophobicity and uptake by plant roots[J]. Environ Sci Technol, 2009, 43(2): 324-329. doi: 10.1021/es801751x
    [11] TRAPP S. Dynamic root uptake model for neutral lipophilic organics[J]. Environ Toxicol Chem, 2002, 21(1): 203-206. doi: 10.1002/etc.5620210128
    [12] LI Y, LONG L, YAN H Q, et al. Comparison of uptake, translocation and accumulation of several neonicotinoids in komatsuna (Brassica rapa var. perviridis) from contaminated soils[J]. Chemosphere, 2018, 200: 603-611. doi: 10.1016/j.chemosphere.2018.02.104
    [13] WILD E, DENT J, THOMAS G O, et al. Direct observation of organic contaminant uptake, storage, and metabolism within plant roots[J]. Environ Sci Technol, 2005, 39(10): 3695-3702. doi: 10.1021/es048136a
    [14] HSU F C, MARXMILLER R L, YANG A Y. Study of root uptake and xylem translocation of cinmethylin and related compounds in detopped soybean roots using a pressure chamber technique[J]. Plant Physiol, 1990, 93(4): 1573-1578. doi: 10.1104/pp.93.4.1573
    [15] SUN J Q, WU Y H, JIANG P, et al. Concentration, uptake and human dietary intake of novel brominated flame retardants in greenhouse and conventional vegetables[J]. Environ Int, 2019, 123: 436-443. doi: 10.1016/j.envint.2018.12.008
    [16] BRÜCK E, ELBERT A, FISCHER R, et al. Movento®, an innovative ambimobile insecticide for sucking insect pest control in agriculture: biological profile and field performance[J]. Crop Prot, 2009, 28(10): 838-844. doi: 10.1016/j.cropro.2009.06.015
    [17] 姚安庆, 杨健. 农药在植物体内的传导方式和农药传导生物学[J]. 中国植保导刊, 2012, 32(10): 14-18.

    YAO A Q, YANG J. Conduction mode of pesticides in plant and pesticide-conduction biology[J]. China Plant Prot, 2012, 32(10): 14-18.
    [18] QIU J L, CHEN G S, XU J Q, et al. In vivo tracing of organochloride and organophosphorus pesticides in different organs of hydroponically grown malabar spinach (Basella alba L. )[J]. J Hazard Mater, 2016, 316: 52-59. doi: 10.1016/j.jhazmat.2016.05.024
    [19] 张传清. 三环唑防治稻瘟病的作用机制与抗药性研究[D]. 南京: 南京农业大学, 2005.

    ZHANG C Q. Rice blast disease control mechanism and fungicide resistance of tricyclazole[D]. Nanjing: Nanjing Agricultural University, 2005
    [20] 韩玲娟. 己唑醇在稻田环境中的残留动态及环境行为研究[D]. 南京: 南京农业大学, 2012.

    HAN L J. Study on the residual dynamics and environmental behavior of hexaconazole in paddy field environment[D]. Nanjing: Nanjing Agricultural University, 2012.
    [21] 熊胜. 氟环唑和醚菌酯在水稻上的膳食风险评估及生物炭对氟环唑的吸附[D]. 长沙: 湖南农业大学, 2019.

    XIONG S. Dietary risk assessment of epoxiconazole and kresomix-methyl on rice and the adsorption of epoxiconazole in biochar[D]. Changsha: Hunan Agricultural University, 2019.
    [22] 殷星. 嘧菌酯的环境行为及在水稻上的残留动态研究[D]. 南京: 南京农业大学, 2014.

    YIN X. Study on the environmental behavior and residual dynamics of azoxystrobin in paddy[D]. Nanjing: Nanjing Agricultural University, 2014.
    [23] 陈婉莹. 黑龙江水稻纹枯病菌对噻呋酰胺抗性监测、抗源筛选及药剂防治[D]. 哈尔滨: 东北农业大学, 2020.

    CHEN W Y. Monitoring of resistance of Rhizoctonia solani to thifuramide, screening of resistance gremplasm and chemical control of rice sheath blight in Heilongjiang[D]. Harbin: Northeast Agricultural University, 2020.
    [24] 中国农药信息网[DB/OL]. http://www.chinapesticide.org.cn/hysj/index.jhtml.

    China Pesticide Information Network[DB/OL]. http://www.chinapesticide.org.cn/hysj/index.jhtml.
    [25] LEHOTAY S J. Quick, easy, cheap, effective, rugged, and safe approach for determining pesticide residues[M]//Pesticide Protocols. Totowa, NJ: Humana Press, 2006: 239-261.
    [26] NAMIKI S, OTANI T, MOTOKI Y, et al. The influence of Brassica rapa var. perviridis growth conditions on the uptake and translocation of pesticides[J]. J Pestic Sci, 2018, 43(4): 248-254. doi: 10.1584/jpestics.D18-041
    [27] LEHOTAY S J. Determination of pesticide residues in nonfatty foods by supercritical fluid extraction and gas chromatography/mass spectrometry: collaborative study[J]. J AOAC Int, 2002, 85(5): 1148-1166. doi: 10.1093/jaoac/85.5.1148
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  39
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-22
  • 录用日期:  2022-03-24
  • 网络出版日期:  2022-04-29
  • 刊出日期:  2022-08-03

目录

    /

    返回文章
    返回