• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铈离子与焦磷酸根离子配位聚合物网络用于草甘膦快速荧光检测

张强 王冬伟 蒋建功 刘雪科 刘东晖 周志强

张强, 王冬伟, 蒋建功, 刘雪科, 刘东晖, 周志强. 铈离子与焦磷酸根离子配位聚合物网络用于草甘膦快速荧光检测[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2022.0045
引用本文: 张强, 王冬伟, 蒋建功, 刘雪科, 刘东晖, 周志强. 铈离子与焦磷酸根离子配位聚合物网络用于草甘膦快速荧光检测[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2022.0045
ZHANG Qiang, WANG Dongwei, JIANG Jiangong, LIU Xueke, LIU Donghui, ZHOU Zhiqiang. Cerium ion (Ce3+) and pyrophosphate ion coordination polymer networks for the rapid fluorometric detection of glyphosate[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2022.0045
Citation: ZHANG Qiang, WANG Dongwei, JIANG Jiangong, LIU Xueke, LIU Donghui, ZHOU Zhiqiang. Cerium ion (Ce3+) and pyrophosphate ion coordination polymer networks for the rapid fluorometric detection of glyphosate[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2022.0045

铈离子与焦磷酸根离子配位聚合物网络用于草甘膦快速荧光检测

doi: 10.16801/j.issn.1008-7303.2022.0045
基金项目: 中国农业大学2115人才培育发展支持计划.
详细信息
    作者简介:

    张强,421176474@qq.com

    通讯作者:

    刘东晖,liudh@cau.edu.cn

  • 中图分类号: O657.39;TQ457

Cerium ion (Ce3+) and pyrophosphate ion coordination polymer networks for the rapid fluorometric detection of glyphosate

Funds: the 2115 Talent Development Program of China Agricultural University.
  • 摘要: 本文基于铈离子与焦磷酸根离子 (Ce-PPi) 配位聚合物网络 (coordination polymer networks,CPNs) 开发出一种草甘膦快速检测方法。通过铈离子 (Ce3+) 与焦磷酸根离子 (PPi) 之间的配位作用,自组装合成出Ce-PPi CPNs,并对其结构和性质进行了表征。草甘膦可以减弱PPi与Ce3+之间的配体场效应,导致Ce-PPi CPNs的荧光减弱。基于这一原理,通过优化条件,实现了草甘膦的定量检测,R2为0.9972,检出限为0.014 μmol/L。该方法检测灵敏度较高,且对草甘膦具有优异的选择性,可应用于自来水与苹果样品中草甘膦的检测,方法定量限为0.05 mg/kg,回收率在77%~87%之间,为草甘膦的快速、现场和实时实际样品检测提供了新的选择。
  • 图  1  Ce3+与Ce-PPi CPNs能级和能量转移过程示意图[27]

    Figure  1.  Schematic diagram of energy levels and energy transfer process of Ce3+ and Ce-PPi CPNs[27]

    图  2  Ce-PPi CPNs用于草甘膦荧光检测示意图

    Figure  2.  Principle of the fluorometric glyphosate assay based on Ce-PPi CPNs

    图  3  Ce- PPi CPNs的SEM谱图

    Figure  3.  SEM image of Ce-PPi CPNs

    图  4  Ce- PPi CPNs SEM (A)、EDS (B)(C)(磷:红色,铈:绿色)谱图

    Figure  4.  (A) SEM image of Ce-PPi CPNs. EDS mapping images of (B) P in red and (C) Ce in green

    图  5  Ce- PPi CPNs的XPS谱图

    Figure  5.  XPS image of Ce- PPi CPNs

    图  6  Ce- PPi CPNs的激发和发射光谱

    Figure  6.  The excitation and emission spectra of Ce-PPi CPNs

    图  7  不同物质的紫外-吸收光谱 (浓度均为1 mmol/L)

    Figure  7.  UV-Vis absorption spectra of different substances (the concentration of all substances was 1 mmol/L)

    图  8  Ce3+浓度(A)、PPi添加量(B)、 PPi与Ce3+结合时间 (C)以及草甘膦与 Ce-PPi CPNs作用时间(D)对Ce-PPi CPNs相对荧光强度的影响

    Figure  8.  Effects of the concentration of Ce3+(A) , the addition amount of PPi (B) , the combination time between PPi with Ce3+(C) and reaction time of glyphosate and Ce-PPi CPNs (D) on relative fluorescence intensities of Ce-PPi CPNs

    图  9  Ce-PPi CPNs在不同浓度草甘膦存在下的荧光光谱

    Figure  9.  Fluorescence spectra of Ce-PPi with various concentration of glyphosate

    图  10  草甘膦和潜在干扰物质存在时的相对荧光强度

    1-23分别代表:1-草甘膦、2-Na+、3-Ca2+、4-Zn2+、5-抗坏血酸、6-葡萄糖、7-甘氨酸、8-毒死蜱、9-灭多威、10-莠去津、11-异丙甲草胺、12-戊唑醇、13-嘧菌酯、14-马拉硫磷、15-杀螟硫磷、16-草铵膦、17-辛硫磷、18-乙酰甲胺磷、19-H2PO4、20-HPO42−、21-PO43−、22-百草枯、23-PBS缓冲液(pH=7.4) (所有物质浓度均为5 μmol/L)

    Figure  10.  The relative fluorescence intensity change rate of glyphosate and potential interfering substances towards detection.

    1-23 was 1-glyphosate, 2-Na+, 3-Ca2+, 4-Zn2+, 5-ascorbic acid, 6-glucose, 7-glycine, 8-chlorpyrifos, 9-methomyl, 10-atrazine, 11-metolachlor, 12-tebuconazole, 13-azoxystrobin, 14-malathion, 15-fenitrothion, 16-glufosinate ammonium, 17-phoxim, 18-acephate, 19-H2PO4, 20-HPO42−, 21-PO43−, 22-paraquat, 23-PBS buffer (pH=7.4) , respectively (5 μmol/L for all substances)

    表  1  Ce-PPi CPNs和NIST数据库中被测元素的结合能

    Table  1.   Binding energies of tested elements in Ce-PPi and NIST database

    元素
    Element
    结合能
    Binding energy
    Ce-PPi/eVNIST/eV
    铈 Cerium (3d3/2) 904.4 904.0 (CePO4)*
    铈 Cerium (3d5/2) 885.5 885.4 (CePO4)
    氧 Oxygen 531.3 531.0 (CePO4)
    磷 Phosphorus 133.8 133.3 (NaP2O7)
    注:*NIST 结合能括号内的内容为元素所属的具体物质。Note: *The content in the NIST binding energy brackets is the specific substance to which the element belongs.
    下载: 导出CSV

    表  2  不同草甘膦检测方法的检出限和检测时间对比

    Table  2.   Comparison of limit of detection (LOD) and detection time of glyphosate by different analytical methods

    分析方法 
    Analytical method 
    检出限
    LOD/
    (μg/L)
    检测时间
    Detection time/
    min
    参考文献
    Reference
    荧光法
    Fluorescence
    5 7 [29]
    免疫测定法
    Immunoassay
    4.06 × 105 30 [30]
    比色法
    Colorimetry
    100 50 [31]
    电化学法
    Electrochem SENSE
    10 5 [32]
    化学发光法
    Chemiluminescence
    46 10 [33]
    液相色谱-质谱联用
    LC-MS/MS
    0.23 15 [34]
    Ce-PPi CPNs荧光传感器
    Fluorescent sensor based
    on Ce-PPi CPNs
    2.37
    (0.014 μmol/L)
    5 本工作
    This work
    下载: 导出CSV

    表  3  自来水和苹果样品中草甘膦的添加回收率和相对标准偏差(n=5)

    Table  3.   Recoveries and relative standard deviations (RSD) of glyphosate in tap water and apple samples(n=5)

    样品种类
    Sample
    线性方程及相关系数
    Linear equation and
    correlation coefficient
    (0.05~1 mg/L (mg/kg))
    添加水平
    Spiked level
    平均回收率
    Average recovery/%
    相对标准偏差
    RSD/%
    定量限
    The limit of
    quantitation, LOQ
    自来水
    Tap water
    F= −5331.582 log c + 7311.298
    R2=0.9955
    0.05 mg/L 80 8.7 0.05 mg/L
    0.5 mg/L 84 6.4
    1 mg/L 87 6.8
    苹果
    Apple
    F= −5072.112 log c + 7899.375
    R2=0.9980
    0.05 mg/kg 77 8.8 0.05 mg/kg
    0.5 mg/kg 80 8.0
    1 mg/kg 86 6.1
    下载: 导出CSV
  • [1] VALCKE M, BOURGAULT M H, ROCHETTE L, et al. Human health risk assessment on the consumption of fruits and vegetables containing residual pesticides: A cancer and non-cancer risk/benefit perspective[J]. Environ Int, 2017, 108: 63-74. doi: 10.1016/j.envint.2017.07.023
    [2] FAROOQ S, NIE J Y, CHENG Y, et al. Molecularly imprinted polymers' application in pesticide residue detection[J]. Analyst, 2018, 143(17): 3971-3989. doi: 10.1039/C8AN00907D
    [3] CHIARI M, CORTINOVIS C, VITALE N, et al. Pesticide incidence in poisoned baits: A 10-year report[J]. Sci Total Environ, 2017, 601: 285-292.
    [4] LEE E A, ZIMMERMAN L R, BHULLAR S S, et al. Linker-assisted immunoassay and liquid chromatography/mass spectrometry for the analysis of glyphosate[J]. Anal Chem, 2002, 74(19): 4937-4943. doi: 10.1021/ac020208y
    [5] 吴文静, 林燕. NBD-Cl柱前衍生-高效液相色谱法测定土壤中草甘膦残留[J]. 农药学学报, 2020, 22(6): 1027-1032. doi: 10.16801/j.issn.1008-7303.2020.0154

    WU W J, LIN Y. Determination of glyphosate in soils by HPLC with pre-column derivatization using 4-chloro-7-nitro-1,2,3-benzoxadiazole[J]. Chin J Pestic Sci, 2020, 22(6): 1027-1032. doi: 10.16801/j.issn.1008-7303.2020.0154
    [6] GUO J J, ZHANG Y, LUO Y L, et al. Efficient fluorescence resonance energy transfer between oppositely charged CdTe quantum dots and gold nanoparticles for turn-on fluorescence detection of glyphosate[J]. Talanta, 2014, 125: 385-392. doi: 10.1016/j.talanta.2014.03.033
    [7] BATTAGLIN W A, MEYER M T, KUIVILA K M, et al. Glyphosate and its degradation product AMPA occur frequently and widely in US soils, surface water, groundwater, and precipitation[J]. JAWRA J Am Water Resour Assoc, 2014, 50(2): 275-290. doi: 10.1111/jawr.12159
    [8] SINGH S, KUMAR V, DATTA S, et al. Glyphosate uptake, translocation, resistance emergence in crops, analytical monitoring, toxicity and degradation: A review[J]. Environ Chem Lett, 2020, 18(3): 663-702. doi: 10.1007/s10311-020-00969-z
    [9] CHANG Y C, LIN Y S, XIAO G T, et al. A highly selective and sensitive nanosensor for the detection of glyphosate[J]. Talanta, 2016, 161: 94-98. doi: 10.1016/j.talanta.2016.08.029
    [10] WEI X, GAO X T, ZHAO L, et al. Fast and interference-free determination of glyphosate and glufosinate residues through electrophoresis in disposable microfluidic chips[J]. J Chromatogr A, 2013, 1281: 148-154. doi: 10.1016/j.chroma.2013.01.039
    [11] WANG X F, SAKINATI M, YANG Y X, et al. The construction of a CND/Cu2+ fluorescence sensing system for the ultrasensitive detection of glyphosate[J]. Anal Methods, 2020, 12(4): 520-527. doi: 10.1039/C9AY02303H
    [12] LIU H B, CHEN P P, LIU Z, et al. Electrochemical luminescence sensor based on double suppression for highly sensitive detection of glyphosate[J]. Sens Actuat B Chem, 2020, 304: 127364. doi: 10.1016/j.snb.2019.127364
    [13] SUN Y J, WANG C Y, WEN Q Y, et al. Determination of glyphosate and aminomethylphosphonic acid in water by LC using a new labeling reagent, 4-methoxybenzenesulfonyl fluoride[J]. Chromatographia, 2010, 72(7-8): 679-686. doi: 10.1365/s10337-010-1705-8
    [14] 杨亚琴, 冯书惠, 胡永建, 等. 气相色谱-质谱法测定绿茶中草甘膦和氨甲基膦酸残留量[J]. 茶叶科学, 2020, 40(1): 125-132. doi: 10.3969/j.issn.1000-369X.2020.01.014

    YANG Y Q, FENG S H, HU Y J, et al. Determination of glyphosate and aminomethyl phosphonic acid residue in green tea by gas chromatography-mass spectrometry[J]. J Tea Sci, 2020, 40(1): 125-132. doi: 10.3969/j.issn.1000-369X.2020.01.014
    [15] ZHU Y, ZHANG F F, TONG C L, et al. Determination of glyphosate by ion chromatography[J]. J Chromatogr A, 1999, 850(1-2): 297-301. doi: 10.1016/S0021-9673(99)00558-0
    [16] OREJUELA E, SILVA M. Rapid and sensitive determination of phosphorus-containing amino acid herbicides in soil samples by capillary zone electrophoresis with diode laser-induced fluorescence detection[J]. Electrophoresis, 2005, 26(23): 4478-4485. doi: 10.1002/elps.200500290
    [17] WANG D, LIN B X, CAO Y J, et al. A highly selective and sensitive fluorescence detection method of glyphosate based on an immune reaction strategy of carbon dot labeled antibody and antigen magnetic beads[J]. J Agric Food Chem, 2016, 64(30): 6042-6050. doi: 10.1021/acs.jafc.6b01088
    [18] WANG X F, YANG Y X, HUO D Q, et al. A turn-on fluorescent nanoprobe based on N-doped silicon quantum dots for rapid determination of glyphosate[J]. Microchimica Acta, 2020, 187(6): 341. doi: 10.1007/s00604-020-04304-9
    [19] DAI L X, LO W S, GU Y J, et al. Breaking the 1, 2-HOPO barrier with a cyclen backbone for more efficient sensitization of Eu(iii) luminescence and unprecedented two-photon excitation properties[J]. Chem Sci, 2019, 10(17): 4550-4559. doi: 10.1039/C9SC00244H
    [20] GUZMÁN-MÉNDEZ Ó, GONZÁLEZ F, BERNÈS S, et al. Coumarin derivative directly coordinated to lanthanides acts as an excellent antenna for UV-vis and near-IR emission[J]. Inorg Chem, 2018, 57(3): 908-911. doi: 10.1021/acs.inorgchem.7b02861
    [21] LIU C L, ZHANG R L, LIN C S, et al. Intraligand charge transfer sensitization on self-assembled europium tetrahedral cage leads to dual-selective luminescent sensing toward anion and cation[J]. J Am Chem Soc, 2017, 139(36): 12474-12479. doi: 10.1021/jacs.7b05157
    [22] WU X, DEGOTTARDI Q, WU I C, et al. Lanthanide-coordinated semiconducting polymer dots used for flow cytometry and mass cytometry[J]. Angew Chem Int Ed Engl, 2017, 56(47): 14908-14912. doi: 10.1002/anie.201708463
    [23] GAO R R, WANG J H, WANG H, et al. Fluorescent nucleotide-lanthanide nanoparticles for highly selective determination of picric acid[J]. Microchimica Acta, 2021, 188(1): 18. doi: 10.1007/s00604-020-04686-w
    [24] MA L, ZHANG Q, WU H, et al. Multifunctional luminescence sensors assembled with lanthanide and a cyclotriveratrylene-based ligand[J]. Eur J Inorg Chem, 2017, 2017(36): 4221-4230. doi: 10.1002/ejic.201700874
    [25] QU F, WANG H, YOU J M. Dual lanthanide-probe based on coordination polymer networks for ratiometric detection of glyphosate in food samples[J]. Food Chem, 2020, 323: 126815. doi: 10.1016/j.foodchem.2020.126815
    [26] YE K, WANG L J, SONG H W, et al. Bifunctional MIL-53(Fe) with pyrophosphate-mediated peroxidase-like activity and oxidation-stimulated fluorescence switching for alkaline phosphatase detection[J]. J Mater Chem B, 2019, 7(31): 4794-4800. doi: 10.1039/C9TB00951E
    [27] ZHOU W T, WANG L, LIU C, et al. Quantification of cyclic DNA polymerization with lanthanide coordination nanomaterials for liquid biopsy[J]. Chem Sci, 2020, 11(14): 3745-3751. doi: 10.1039/C9SC06408G
    [28] HOU J Z, WANG X F, LAN S Y, et al. A turn-on fluorescent sensor based on carbon dots from Sophora japonica leaves for the detection of glyphosate[J]. Anal Methods, 2020, 12(33): 4130-4138. doi: 10.1039/D0AY01241F
    [29] YANG Y X, GHALANDARI B, LIN L Y, et al. A turn-on fluorescence sensor based on Cu2 + modulated DNA-templated silver nanoclusters for glyphosate detection and mechanism investigation[J]. Food Chem, 2022, 367: 130617. doi: 10.1016/j.foodchem.2021.130617
    [30] VIIRLAID E, ILISSON M, KOPANCHUK S, et al. Immunoassay for rapid on-site detection of glyphosate herbicide[J]. Environ Monit Assess, 2019, 191(8): 507. doi: 10.1007/s10661-019-7657-z
    [31] DE ALMEIDA L K S, CHIGOME S, TORTO N, et al. A novel colorimetric sensor strip for the detection of glyphosate in water[J]. Sens Actuat B Chem, 2015, 206: 357-363. doi: 10.1016/j.snb.2014.09.039
    [32] DHAMU V N, PRASAD S. ElectrochemSENSE: A platform towards field deployable direct on-produce glyphosate detection[J]. Biosens Bioelectron, 2020, 170: 112609. doi: 10.1016/j.bios.2020.112609
    [33] ZHAO P N, YAN M, ZHANG C C, et al. Determination of glyphosate in foodstuff by one novel chemiluminescence-molecular imprinting sensor[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2011, 78(5): 1482-1486. doi: 10.1016/j.saa.2011.01.037
    [34] ULRICH J C, FERGUSON P L. Development of a sensitive direct injection LC-MS/MS method for the detection of glyphosate and aminomethylphosphonic acid (AMPA) in hard waters[J]. Anal Bioanal Chem, 2021, 413(14): 3763-3774. doi: 10.1007/s00216-021-03324-5
    [35] 食品安全标准 食品中农药最大残留限量: GB 2763-2021[S]. 北京: 中国农业出版社, 2021.

    Food safety standard, Maximum residue limits of pesticides in foods: GB 2763-2021[S]. Beijing: China Agricultural Press, 2021.
    [36] 食品中草甘膦残留量测定: NY/T 1096—2006[S]. 北京: 中国农业出版社, 2006.

    Determination of glyphosate residues in food: NY/T 1096—2006[S]. Beijing: Chinese Agriculture Press, 2006.
    [37] 出口食品中草甘膦及其代谢物残留量的测定方法 液相色谱-质谱/质谱法: SN/T 4655—2016[S]. 北京: 中国标准出版社, 2017.

    Determination of glyphosate and its metablize residues in foodstuffs for export. HPLC-MS/MS method: SN/T 4655—2016[S]. Beijing: Standards Press of China, 2017.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  12
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-11
  • 录用日期:  2022-03-23
  • 网络出版日期:  2022-05-09

目录

    /

    返回文章
    返回