Design, synthesis and antifungal activity of amide hybrid molecules containing the structure of phenolic monoterpene
-
摘要: 为寻找具有良好抑菌活性的酰胺类化合物,本研究将天然单萜酚类化合物香芹酚和百里香酚与琥珀酸脱氢酶抑制剂(SDHI)药效团拼合,设计并合成了30个酰胺类杂合分子,其结构经核磁共振氢谱(1H NMR)、碳谱(13C NMR)及高分辨质谱(HRMS)等确认。采用菌丝生长速率法测定了目标化合物对5种植物病原真菌的抑菌活性。结果表明,目标化合物对茄链格孢菌Alternaria solani和灰葡萄孢Botrytis cinerea的抑菌活性较好,其中 7e (N-(4-羟基-5-异丙基-2-甲基苯)-3-甲基噻吩-2-酰胺)的活性最高,对茄链格孢菌和灰葡萄孢的EC50值分别为3.28和15.06 μg/mL,且 7e 与啶酰菌胺之间没有交互抗性。琥珀酸脱氢酶(SDH)活性测定表明, 7e 对灰葡萄孢敏感、抗性和B-P225F突变菌株的SDH均具有较强的抑制活性。分子对接研究表明, 7e 与野生型和突变型灰葡萄孢琥珀酸脱氢酶(BcSDH)之间具有较强的亲和力;推测 7e 是潜在的新型SDHI,其与啶酰菌胺之间对菌株SDH抑制活性的差异和与野生型和突变型BcSDH之间结合模式的差异,可能是二者之间没有交互抗性的原因。Abstract: Aiming to discover the amides with high antifungal activity, thirty amide hybrid molecules were designed and synthesized by combining natural phenolic monoterpene (carvacrol and thymol) with the functional groups of succinate dehydrogenase inhibitors (SDHI). The structures of the synthesized compounds were characterized by the 1H NMR, 13C NMR and high resolution mass spectrometry (HRMS). The antifungal activity of the hybrid molecules against five plant pathogenic fungus were determined by mycelial growth rate method. The results showed that the synthesized hybrid molecules exhibited excellent antifungal activity against Alternaria solani and Botrytis cinerea. Among of them, the compound 7e (N-(4-hydroxy-5-isopropyl-2-methylphenyl)-3-methylthiophene-2-carboxamide) showed the highest antifungal activity, with EC50 values of 3.28 and 15.06 μg/mL against A. solani and B.cinerea, respectively. In addition, there was no cross-resistance between compound 7e and boscalid. Succinate dehydrogenase (SDH) activity assay showed that the compound 7e had strong SDH inhibitory activity against sensitive, resistant and B-P225F mutant strains of B. cinerea. Molecular docking studies showed that compound 7e had a strong affinity with both wild-type and mutant B. cinerea succinate dehydrogenase (BcSDH). Therefore, it was speculated that compound 7e was a potential novel SDHI. The difference in SDH inhibitory activity and binding modes with wild-type and mutant BcSDH, which may account for the lack of cross-resistance between the compound 7e and boscalid.
-
Key words:
- phenolic monoterpene /
- amide /
- antifungal activity /
- succinate dehydrogenase /
- molecular docking
-
图 2 啶酰菌胺 (a) 和7e (b) 不同浓度处理对灰葡萄孢可溶性蛋白含量的影响
注:BcS、BcR和BcP225F分别表示灰葡萄孢敏感、抗性和P225F突变菌株。
Figure 2. Changes of soluble protein content of B. cinerea after treatment with boscalid and 7e at different concentrations
Note: BcS、BcR and BcP225F represent sensitive, resistant and P225F mutant strains of B. cinerea, respectively.
图 3 啶酰菌胺 (a) 和7e (b) 处理对灰葡萄孢SDH活性的影响
注:BcS、BcR和BcP225F分别表示灰葡萄孢敏感、抗性和P225F突变菌株;图中不同的小写字母表示各处理在P = 0.05水平上差异显著。
Figure 3. Influence of boscalid and 7e on SDH activity of B. cinerea
Note: BcS、BcR and BcP225F represent sensitive, resistant and P225F mutant strains of B. cinerea, respectively. Different lowercase letters indicate significant difference at the level of 5% in the figure.
图 4 啶酰菌胺和7e与野生型和突变型BcSDH的结合模式
注:Ⅰ和Ⅱ分别表示啶酰菌胺与野生型和P225F突变型BcSDH的结合模式 (已发表[8]);Ⅲ 和 Ⅳ分别表示化合物7e与野生型和P225F突变型BcSDH的结合模式。结合模式中黄色、绿色、紫色和红色虚线分别表示疏水作用、氢键、π-阳离子和π-π 堆积作用。
Figure 4. The binding modes of boscalid and 7e with wild-type or mutant BcSDH
Note: Ⅰ and Ⅱ represent the binding modes of boscalid with wild-type or P225F mutant BcSDH, respectively. Ⅲ and Ⅳ represent the binding modes of compound 7e with wild-type or P225F mutant BcSDH, respectively. The yellow, green, purple, and red dotted lines in the binding modes represent hydrophobic interaction, hydrogen bond, π-cation and π-π stacking interaction, respectively.
表 1 目标化合物在10 μg/mL下对植物病原真菌的抑菌活性
Table 1. The antifungal activity of hybrid molecules against pathogenic fungi at 10 μg/mL
化合物
Compound平均抑制率 ± SD
Mean inhibition rate ± SD/%茄链格孢菌
A. solani灰葡萄孢
B. cinerea山茶炭疽菌
C. camelliae尖孢镰刀菌
F. oxysporum立枯丝核菌
R. solani香芹酚 carvacrol 55.59 ± 4.24 gh 30.75 ± 0.35 mn 8.68 ± 0.79 a 9.77 ± 1.24 ab 23.19 ± 1.14 j 百里香酚 thymol 56.19 ± 2.65 gh 28.22 ± 3.81 kl 15.79 ± 0.73 hij 16.20 ± 1.20 ij 31.98 ± 2.49 k 6a 47.50 ± 1.41 ef 23.63 ± 3.68 ij 16.55 ± 2.41 ijk 15.83 ± 0.07 ij 16.20 ± 2.74 gh 6b 39.32 ± 2.13 ab 26.63 ± 2.28 k 15.41 ± 2.38 hij 14.78 ± 0.43 hi 5.63 ± 1.40 a 6c 47.49 ± 2.11 ef 19.08 ± 1.36 gh 17.42 ± 1.10 jk 12.40 ± 0.86 def 12.83 ± 1.63 cdefg 6d 62.95 ± 1.56 jk 20.65 ± 2.55 hi 16.84 ± 1.79 ijk 12.66 ± 1.35 defg 10.79 ± 2.30 bc 6e 73.97 ± 1.33 m 34.40 ± 1.03 o 14.28 ± 0.75 efgh 14.61 ± 1.44 ghi 21.93 ± 1.92 ij 6f 69.07 ± 0.14 l 16.95 ± 1.13 fg 11.64 ± 0.83 bcd 11.54 ± 1.31 bcdef 19.23 ± 4.61 hi 6g 43.05 ± 1.21 cd 19.65 ± 1.63 gh 11.37 ± 1.15 bc 20.04 ± 0.54 mn 43.89 ± 1.56 m 6h 48.61 ± 1.69 ef 13.44 ± 0.37 cde 14.37 ± 0.42 fgh 10.09 ± 1.16 abc 6.22 ± 1.50 a 6i 40.50 ± 1.57 bc 22.05 ± 2.13 hi 14.28 ± 1.18 efgh 19.00 ± 0.72 klm 34.45 ± 1.56 k 6j 50.15 ± 0.70 f 15.03 ± 0.63 def 12.65 ± 1.26 cdef 8.64 ± 1.83 a 13.33 ± 1.08 cdefg 6k 58.73 ± 1.31 hi 21.64 ± 0.36 hi 13.65 ± 0.37 defgh 12.49 ± 1.00 def 10.66 ± 1.26 bc 6l 36.10 ± 2.42 a 9.58 ± 0.67 ab 14.02 ± 1.18 efgh 12.01 ± 1.73 cdef 18.81 ± 1.94 hi 6m 38.42 ± 1.86 ab 7.36 ± 1.91 a 12.17 ± 0.84 bcde 11.06 ± 2.72 bcde 12.15 ± 0.86 cdef 6n 50.28 ± 1.25 f 38.08 ± 1.22 p 13.22 ± 1.11 cdefg 16.97 ± 1.18 jk 24.54 ± 3.40 j 6o 39.31 ± 0.51 ab 19.64 ± 3.55 gh 9.25 ± 1.58 a 11.54 ± 1.31 bcdef 14.47 ± 4.40 defg 7a 64.92 ± 2.52 jk 34.60 ± 0.13 o 24.61 ± 0.20 n 12.47 ± 0.05 def 12.15 ± 1.69 cdef 7b 65.51 ± 2.82 jk 32.47 ± 0.71 no 27.74 ± 1.35 op 11.74 ± 0.05 bcdef 10.32 ± 0.65 bc 7c 62.54 ± 1.91 jk 32.93 ± 0.76 no 29.32 ± 0.17 p 15.89 ± 0.78 ij 10.32 ± 0.69 bc 7d 73.34 ± 0.76 m 45.01 ± 1.61 q 24.07 ± 1.34 n 18.58 ± 1.47 klm 6.42 ± 0.41 a 7e 74.53 ± 1.03 m 65.17 ± 0.89 r 31.42 ± 0.38 q 19.31 ± 0.34 lm 13.76 ± 1.33 cdefg 7f 61.92 ± 2.87 ij 31.28 ± 1.21 n 24.86 ± 1.70 n 15.89 ± 1.07 ij 11.23 ± 1.69 bcde 7g 43.11 ± 0.38 cd 27.72 ± 0.96 kl 17.28 ± 0.67 ijk 20.54 ± 0.74 mn 45.19 ± 1.22 m 7h 62.36 ± 2.21 jk 17.31 ± 1.06 fg 18.36 ± 0.51 kl 15.86 ± 0.61 ij 15.55 ± 0.95 fg 7i 48.44 ± 0.50 ef 30.09 ± 1.60 lmn 19.75 ± 0.83 lm 21.53 ± 0.63 n 39.94 ± 0.69 l 7j 55.04 ± 1.96 g 10.93 ± 1.16 bc 21.34 ± 0.39 m 13.22 ± 0.99 fgh 46.89 ± 1.19 m 7k 58.72 ± 2.28 hi 18.90 ± 1.35 gh 10.42 ± 0.04 ab 10.58 ± 0.50 abcd 11.78 ± 1.05 bcde 7l 39.36 ± 2.34 ab 25.56 ± 0.96 jk 15.25 ± 0.47 ghi 18.51 ± 1.35 klm 14.73 ± 1.24 efg 7m 36.54 ± 0.57 a 15.84 ± 0.76 ef 12.50 ± 0.81 bcdef 12.96 ± 0.33 efgh 6.52 ± 1.80 a 7n 73.93 ± 1.13 m 78.50 ± 1.11 s 27.25 ± 0.50 o 23.84 ± 0.90 o 22.94 ± 1.42 j 7o 43.90 ± 1.35 d 23.07 ± 2.38 ij 25.00 ± 1.04 n 17.59 ± 0.70 jkl 8.22 ± 1.33 ab 注:同列数据具有不同小写字母表示各处理在P = 0.05水平上差异显著。Note: Data in the same column with different lowercase letters indicate significant difference at the level of 5%. 表 2 目标化合物在50 μg/mL下对植物病原真菌的抑菌活性
Table 2. The antifungal activity of hybrid molecules against pathogenic fungi at 50 μg/mL
化合物
Compound平均抑制率 ± SD
Mean inhibition rate ± SD/%茄链格孢菌
A. solani灰葡萄孢
B. cinerea山茶炭疽菌
C. camelliae尖孢镰刀菌
F. oxysporum立枯丝核菌
R. solani香芹酚 carvacrol 74.56 ± 2.13 ij 65.00 ± 0.54 klm 40.79 ± 2.19 pq 47.49 ± 1.10 q 69.14 ± 0.31 n 百里香酚 thymol 87.00 ± 1.57 o 64.48 ± 3.03 kl 61.32 ± 0.64 t 61.17 ± 1.33 r 70.78 ± 1.33 n 6a 68.20 ± 1.46 h 32.62 ± 2.38 f 27.13 ± 1.47 h 26.65 ± 0.79 lm 43.25 ± 1.45 j 6b 78.12 ± 1.74 kl 34.91 ± 2.09 fg 23.98 ± 2.27 fg 28.50 ± 0.13 n 26.62 ± 0.08 fg 6c 62.38 ± 0.78 e 25.27 ± 1.00 cd 25.43 ± 0.21 gh 21.11 ± 0.42 f 33.32 ± 2.42 h 6d 77.83 ± 0.69 k 64.59 ± 0.74 kl 21.13 ± 1.54 de 20.84 ± 0.36 f 37.83 ± 0.99 i 6e 84.68 ± 0.24 no 63.64 ± 0.84 k 38.62 ± 0.67 no 25.93 ± 1.28 klm 48.91 ± 1.61 k 6f 84.10 ± 0.36 n 66.59 ± 0.75 lmn 22.74 ± 1.82 ef 20.98 ± 1.35 f 26.70 ± 2.21 fg 6g 72.55 ± 2.40 i 26.77 ± 1.64 d 17.46 ± 1.52 c 21.44 ± 1.86 f 54.22 ± 0.50 l 6h 62.08 ± 0.57 e 16.86 ± 0.37 b 15.14 ± 0.83 b 14.42 ± 0.12 bc 11.11 ± 0.70 a 6i 57.40 ± 2.13 cd 29.61 ± 2.92 e 31.71 ± 1.11 i 24.27 ± 1.13 jk 60.81 ± 0.82 m 6j 62.70 ± 1.55 e 29.84 ± 1.03 e 19.60 ± 0.48 d 13.45 ± 1.39 ab 18.88 ± 1.92 c 6k 67.59 ± 0.55 gh 25.28 ± 0.60 cd 17.37 ± 0.83 c 20.91 ± 1.07 f 14.88 ± 1.30 b 6l 39.87 ± 1.59 a 11.54 ± 1.05 a 17.46 ± 0.74 c 12.25 ± 1.30 a 31.70 ± 2.53 h 6m 50.87 ± 1.14 b 13.76 ± 0.92 a 13.23 ± 0.55 a 12.02 ± 1.10 a 18.24 ± 1.08 c 6n 75.13 ± 1.46 j 67.56 ± 0.98 mn 30.42 ± 1.07 i 29.00 ± 1.46 n 48.09 ± 3.10 k 6o 57.78 ± 2.04 d 22.83 ± 3.51 c 16.67 ± 0.74 bc 15.56 ± 1.01 cd 28.03 ± 0.41 g 7a 80.53 ± 0.62 lm 66.81 ± 1.85 lmn 47.38 ± 0.63 r 37.41 ± 0.16 p 38.76 ± 1.59 i 7b 80.81 ± 1.56 m 63.74 ± 0.40 k 47.38 ± 0.21 r 24.20 ± 0.65 ijk 28.44 ± 0.94 g 7c 78.13 ± 0.94 kl 62.80 ± 0.72 k 42.40 ± 1.67 q 25.67 ± 0.11 kl 21.79 ± 1.49 d 7d 82.30 ± 1.81 mn 76.30 ± 0.44 o 33.77 ± 0.40 jk 32.76 ± 1.02 o 36.92 ± 1.52 i 7e 77.86 ± 1.29 k 68.00 ± 1.51 n 51.05 ± 0.61 s 37.16 ± 0.37 p 42.89 ± 0.50 j 7f 76.33 ± 1.08 jk 66.82 ± 1.30 lmn 37.16 ± 1.39 mn 18.83 ± 0.39 e 23.62 ± 0.45 de 7g 56.27 ± 1.00 cd 39.81 ± 0.84 h 32.19 ± 1.00 ij 32.03 ± 0.38 o 70.64 ± 0.68 n 7h 62.08 ± 0.46 e 35.31 ± 0.35 g 25.06 ± 0.75 g 18.74 ± 1.31 e 24.65 ± 3.38 ef 7i 54.95 ± 1.25 c 43.66 ± 0.88 i 35.00 ± 0.38 kl 27.54 ± 1.45 mn 68.56 ± 0.72 n 7j 74.32 ± 2.17 ij 35.99 ± 1.03 g 36.72 ± 2.16 lmn 23.31 ± 0.92g hij 75.11 ± 0.42 o 7k 63.29 ± 1.95 ef 24.14 ± 1.36 cd 16.38 ± 0.68 bc 21.87 ± 1.64 fgh 32.66 ± 1.78 h 7l 57.49 ± 2.06 cd 39.82 ± 1.02 h 27.13 ± 0.29 h 22.46 ± 0.54 fghi 38.53 ± 1.83 i 7m 50.70 ± 1.29 b 18.55 ± 0.75 b 16.75 ± 0.47 bc 16.21 ± 0.90 d 11.33 ± 1.78 a 7n 80.73 ± 0.68 m 78.51 ± 0.36 o 39.50 ± 0.69 op 33.33 ± 0.46 o 49.86 ± 0.88 k 7o 63.46 ± 0.57 ef 53.85 ± 0.70 j 36.00 ± 0.16 lm 21.76 ± 0.68 fg 23.23 ± 1.41 de 注:同列数据具有不同小写字母表示各处理在P = 0.05水平上差异显著。Note: Data in the same column with different lowercase letters indicate significant difference at the level of 5%. 表 3 化合物对茄链格孢菌和灰葡萄孢的毒力测定
Table 3. Toxicity test of compounds to A. solani and B. cinerea
靶标菌
Pathogen化合物
Compound回归方程
Regression equation相关系数
Correlation coefficient, rEC50/
(μg/mL)95% 置信区间
95% Confidence limit/(μg/mL)茄链格孢菌
A. solani啶酰菌胺 boscalid y = 0.53x − 0.34 0.99 0.23 0.18~0.31 6d y = 0.91x − 0.79 0.96 7.24 6.12~8.45 6e y = 0.64x − 0.66 0.98 10.76 8.66~13.32 6f y = 0.66x − 0.66 0.94 10.23 8.26~12.61 7d y = 0.75x − 0.40 0.99 3.40 2.55~4.30 7e y = 0.53x − 0.28 0.99 3.28 2.12~4.51 7f y = 0.75x − 0.60 0.99 6.21 5.00~7.52 灰葡萄孢
B. cinerea啶酰菌胺 boscalid y = 0.49x − 0.50 0.99 10.28 7.70~13.58 7d y = 1.17x − 1.46 0.96 17.65 15.59~20.16 7e y = 1.32x − 1.56 0.97 15.06 12.75~17.95 7n y = 1.39x − 1.77 0.97 18.65 15.67~22.56 -
[1] Fungicide Resistance Action Commitee. FRAC Code List ©*2021: Fungal control agents sorted by cross resistance pattern and mode of action (including coding for FRAC Groups on product labels) [EB/OL]. 2021, [2022-02-13].https://www.frac.info [2] 魏阁, 高梦琪, 朱晓磊, 等. 靶向琥珀酸脱氢酶的酰胺类杀菌剂的研究进展[J]. 农药学学报, 2019, 23(5-6): 673-680.WEI G, GAO M Q, ZHU X L, et al. Research progress on carboxamide fungicides targeting succinate dehydrogenase[J]. Chin J Pestic Sci, 2019, 23(5-6): 673-680. [3] 党铭铭, 刘民华, 柳爱平, 等. 琥珀酸脱氢酶抑制剂类杀菌剂的最新研究进展[J]. 农药, 2020, 59(6): 391-396.DANG M M, LIU M H, LIU A P, et al. The latest research progress of succinate dehydrogenase inhibitor fungicides[J]. Agrochemicals, 2020, 59(6): 391-396. [4] 詹家绥, 吴娥娇, 刘西莉, 等. 植物病原真菌对几类重要单位点杀菌剂的抗药性分子机制[J]. 中国农业科学, 2014, 47(17): 3392-3404. doi: 10.3864/j.issn.0578-1752.2014.17.007ZHAN J S, WU E J, LIU X L, et al. Molecular basis of resistance of phytopathogenic fungi to several site-specific fungicides[J]. Sci Agric Sinica, 2014, 47(17): 3392-3404. doi: 10.3864/j.issn.0578-1752.2014.17.007 [5] HU M J, FERNÁNDEZ-ORTUÑO D, SCHNABEL G. Monitoring resistance to SDHI fungicides in Botrytis cinerea from strawberry fields[J]. Plant Dis, 2016, 100(5): 959-965. doi: 10.1094/PDIS-10-15-1210-RE [6] ZUNIGA A I, OLIVEIRA M S, REBELLO C S, et al. Baseline sensitivity of Botrytis cinerea isolates from strawberry to isofetamid compared to other SDHIs[J]. Plant Dis, 2020, 104(4): 1224-1230. doi: 10.1094/PDIS-06-19-1140-RE [7] AVENOT H F, THOMAS A, GITAITIS R D, et al. Molecular characterization of boscalid-and penthiopyrad-resistant isolates of Didymella bryoniae and assessment of their sensitivity to fluopyram[J]. Pest Manag Sci, 2012, 68(4): 645-651. doi: 10.1002/ps.2311 [8] 陶丽红, 李佳俊, 夏美荣, 等. 五种琥珀酸脱氢酶抑制剂类杀菌剂与灰葡萄孢琥珀酸脱氢酶的结合模式及抗性机制分析[J]. 农药学学报, 2021, 23(6): 1085-1096.TAO L H, LI J J, XIA M R, et al. Analysis of the binding modes and resistance mechanism of five succinate dehydrogenase inhibitor fungicides with Botrytis cinerea succinate dehydrogenase[J]. Chin J Pestic Sci, 2021, 23(6): 1085-1096. [9] LI H, GAO M Q, CHEN Y, et al. Discovery of pyrazine-carboxamide-diphenyl-ethers as novel succinate dehydrogenase inhibitors via fragment recombination[J]. J Agric Food Chem, 2020, 68(47): 14001-14008. doi: 10.1021/acs.jafc.0c05646 [10] XIONG L, LI H, JIANG L N, et al. Structure-based discovery of potential fungicides as succinate ubiquinone oxidoreductase inhibitors[J]. J Agric Food Chem, 2017, 65(5): 1021-1029. doi: 10.1021/acs.jafc.6b05134 [11] WEI G, HUANG M W, WANG W J, et al. Expanding the chemical space of succinate dehydrogenase inhibitors via the carbon-silicon switch strategy[J]. J Agric Food Chem, 2021, 69(13): 3965-3971. doi: 10.1021/acs.jafc.0c07322 [12] SINGH G, MAURYA S. Antimicrobial, antifungal and insecticidal investigations on essential oils: an overview[J]. Nat Prod Radiance, 2005, 4(3): 179-192. [13] DAVARI M, EZAZI R. Chemical composition and antifungal activity of the essential oil of Zhumeria majdae, Heracleum persicum and Eucalyptus sp. against some important phytopathogenic fungi[J]. J Mycol Med, 2017, 27(4): 463-468. doi: 10.1016/j.mycmed.2017.06.001 [14] ZHANG Z L, XIE Y J, HU X, et al. Antifungal activity of monoterpenes against Botryosphaeria dothidea[J]. Nat Prod Commun, 2018, 13(12): 1721-1724. [15] ZHANG Z L, YANG T, MI N, et al. Antifungal activity of monoterpenes against wood white-rot fungi[J]. Int Biodeterior Biodegrad, 2016, 106: 157-160. doi: 10.1016/j.ibiod.2015.10.018 [16] SHABAN S, PATEL M, AHMAD A. Improved efficacy of antifungal drugs in combination with monoterpene phenols against Candida auris[J]. Sci Rep, 2020, 10(1): 1162. doi: 10.1038/s41598-020-58203-3 [17] ZHAO Y, YANG Y H, YE M, et al. Chemical composition and antifungal activity of essential oil from Origanum vulgare against Botrytis cinerea[J]. Food Chem, 2021, 365: 130506. doi: 10.1016/j.foodchem.2021.130506 [18] WANG K B, JIANG S S, YANG Y H, et al. Synthesis and antifungal activity of carvacrol and thymol esters with heteroaromatic carboxylic acids[J]. Nat Prod Res, 2019, 33(13): 1924-1930. doi: 10.1080/14786419.2018.1480618 [19] 李爱军, 郝红茹. 醚菌胺的合成[J]. 农药, 2016, 55(5): 324-327.LI A J, HAO H R. Synthesis of dimoxystrobin[J]. Agrochemicals, 2016, 55(5): 324-327. [20] 王凯博. 单萜酚衍生物的合成及抗植物病原菌活性研究[D]. 云南农业大学, 2017.WANG K B. Study on synthesis and antifungal activity of phenolic monoterpene derivatives against phytopathogens[D]. Yunnan agricultural unniversity, 2017. [21] BEENA, KUMAR D, RAWAT D S. Synthesis and antioxidant activity of thymol and carvacrol based Schiff bases[J]. Bioorg & Med Chem Lett, 2013, 23(3): 641-645. [22] 李佳俊, 陶丽红, 叶敏, 等. 天然酚类化合物与两种化学杀菌剂的联合抑菌活性研究[J]. 中国农学通报, 2021, 37(14): 150-157. doi: 10.11924/j.issn.1000-6850.casb2020-0656Li J J, Tao L H, Ye M, et al. Synergistic antifungal activity of natural phenolic compounds and two chemical fungicides[J]. Chin Agric Sci Bull, 2021, 37(14): 150-157. doi: 10.11924/j.issn.1000-6850.casb2020-0656 [23] 刘晓漫. 紫茎泽兰中倍半萜化合物的抗菌活性、作用机理及水解规律研究[D]. 北京: 中国农业科学院, 2016.LIU X M. Antimicrobial activity, mechanism against pathogen and hydrolysis of sesquiterpenoids from Eupatorium adenophorum spreng[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. [24] CHERRY J H. Molecular biology of plant a text-manual[M]. Beijing: Science Press, 1979. [25] CHENG J G, LUO X M, YAN X H, et al. Research progress in cation-π interactions[J]. Sci China Ser B Chem, 2008, 51(8): 709-717. doi: 10.1007/s11426-008-0082-8 [26] CHANDLER D. Hydrophobicity: two faces of water[J]. Nature, 2002, 417(6888): 491. doi: 10.1038/417491a [27] DILL K A. The meaning of hydrophobicity[J]. Science, 1990, 250(4978): 297-298. doi: 10.1126/science.250.4978.297.b [28] TEIXEIRA A, NÓBREGA R O, LIMA E O, et al. Antifungal activity study of the monoterpene thymol against Cryptococcus neoformans[J]. Nat Prod Res, 2020, 34(18): 2630-2633. doi: 10.1080/14786419.2018.1547296 [29] CHURKLAM W, CHATURONGAKUL S, NGAMWONGSATIT B, et al. The mechanisms of action of carvacrol and its synergism with nisin against Listeria monocytogenes on sliced bologna sausage[J]. Food Control, 2020, 108: 106864. doi: 10.1016/j.foodcont.2019.106864 [30] JUNG K W, CHUNG M S, BAI H W, et al. Investigation of antifungal mechanisms of thymol in the human fungal pathogen, Cryptococcus neoformans[J]. Molecules, 2021, 26(11): 3476. doi: 10.3390/molecules26113476 [31] ZHU X L, XIONG L, LI H, et al. Computational and experimental insight into the molecular mechanism of carboxamide inhibitors of succinate-ubquinone oxidoreductase[J]. ChemMedChem, 2014, 9(7): 1512-1521. doi: 10.1002/cmdc.201300456 -