• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含单萜酚结构酰胺类杂合分子的设计与合成及抑菌活性

陶丽红 李康 王显助 普特 史晶 詹俊杰 叶敏 王凯博

陶丽红, 李康, 王显助, 普特, 史晶, 詹俊杰, 叶敏, 王凯博. 含单萜酚结构酰胺类杂合分子的设计与合成及抑菌活性[J]. 农药学学报, 2022, 24(4): 699-712. doi: 10.16801/j.issn.1008-7303.2022.0052
引用本文: 陶丽红, 李康, 王显助, 普特, 史晶, 詹俊杰, 叶敏, 王凯博. 含单萜酚结构酰胺类杂合分子的设计与合成及抑菌活性[J]. 农药学学报, 2022, 24(4): 699-712. doi: 10.16801/j.issn.1008-7303.2022.0052
TAO Lihong, LI Kang, WANG Xianzhu, PU Te, SHI Jing, ZHAN Junjie, YE Min, WANG Kaibo. Design, synthesis and antifungal activity of amide hybrid molecules containing the structure of phenolic monoterpene[J]. Chinese Journal of Pesticide Science, 2022, 24(4): 699-712. doi: 10.16801/j.issn.1008-7303.2022.0052
Citation: TAO Lihong, LI Kang, WANG Xianzhu, PU Te, SHI Jing, ZHAN Junjie, YE Min, WANG Kaibo. Design, synthesis and antifungal activity of amide hybrid molecules containing the structure of phenolic monoterpene[J]. Chinese Journal of Pesticide Science, 2022, 24(4): 699-712. doi: 10.16801/j.issn.1008-7303.2022.0052

含单萜酚结构酰胺类杂合分子的设计与合成及抑菌活性

doi: 10.16801/j.issn.1008-7303.2022.0052
基金项目: 国家自然科学基金项目(31901907,32060631)
详细信息
    作者简介:

    陶丽红,taolihong90@163.com

    通讯作者:

    叶敏,yeminpc@126.com

    王凯博,405052973@qq.com

  • 中图分类号: S481.4

Design, synthesis and antifungal activity of amide hybrid molecules containing the structure of phenolic monoterpene

Funds: the National Natural Science Foundation of China (31901907; 32060631)
  • 摘要: 为寻找具有良好抑菌活性的酰胺类化合物,本研究将天然单萜酚类化合物香芹酚和百里香酚与琥珀酸脱氢酶抑制剂(SDHI)药效团拼合,设计并合成了30个酰胺类杂合分子,其结构经核磁共振氢谱(1H NMR)、碳谱(13C NMR)及高分辨质谱(HRMS)等确认。采用菌丝生长速率法测定了目标化合物对5种植物病原真菌的抑菌活性。结果表明,目标化合物对茄链格孢菌Alternaria solani和灰葡萄孢Botrytis cinerea的抑菌活性较好,其中 7e (N-(4-羟基-5-异丙基-2-甲基苯)-3-甲基噻吩-2-酰胺)的活性最高,对茄链格孢菌和灰葡萄孢的EC50值分别为3.28和15.06 μg/mL,且 7e 与啶酰菌胺之间没有交互抗性。琥珀酸脱氢酶(SDH)活性测定表明, 7e 对灰葡萄孢敏感、抗性和B-P225F突变菌株的SDH均具有较强的抑制活性。分子对接研究表明, 7e 与野生型和突变型灰葡萄孢琥珀酸脱氢酶(BcSDH)之间具有较强的亲和力;推测 7e 是潜在的新型SDHI,其与啶酰菌胺之间对菌株SDH抑制活性的差异和与野生型和突变型BcSDH之间结合模式的差异,可能是二者之间没有交互抗性的原因。
  • 1  目标化合物6a~6o和7a~7o的合成路线

    1.  Synthetic routes of compounds 6a-6o and 7a-7o

    图  1  化合物对灰葡萄孢不同菌株的抑制活性

    注:BcSBcRBcP225F分别表示灰葡萄孢敏感、抗性和P225F突变菌株。

    Figure  1.  Antifungal activity of the compounds against different strains of B. cinerea

    Note: BcSBcR and BcP225F represent sensitive, resistant and P225F mutant strains of B. cinerea, respectively.

    图  2  啶酰菌胺 (a) 和7e (b) 不同浓度处理对灰葡萄孢可溶性蛋白含量的影响

    注:BcSBcRBcP225F分别表示灰葡萄孢敏感、抗性和P225F突变菌株。

    Figure  2.  Changes of soluble protein content of B. cinerea after treatment with boscalid and 7e at different concentrations

    Note: BcSBcR and BcP225F represent sensitive, resistant and P225F mutant strains of B. cinerea, respectively.

    图  3  啶酰菌胺 (a) 和7e (b) 处理对灰葡萄孢SDH活性的影响

    注:BcSBcRBcP225F分别表示灰葡萄孢敏感、抗性和P225F突变菌株;图中不同的小写字母表示各处理在P = 0.05水平上差异显著。

    Figure  3.  Influence of boscalid and 7e on SDH activity of B. cinerea

    Note: BcSBcR and BcP225F represent sensitive, resistant and P225F mutant strains of B. cinerea, respectively. Different lowercase letters indicate significant difference at the level of 5% in the figure.

    图  4  啶酰菌胺和7e与野生型和突变型BcSDH的结合模式

    注:Ⅰ和Ⅱ分别表示啶酰菌胺与野生型和P225F突变型BcSDH的结合模式 (已发表[8]);Ⅲ 和 Ⅳ分别表示化合物7e与野生型和P225F突变型BcSDH的结合模式。结合模式中黄色、绿色、紫色和红色虚线分别表示疏水作用、氢键、π-阳离子和π-π 堆积作用。

    Figure  4.  The binding modes of boscalid and 7e with wild-type or mutant BcSDH

    Note: Ⅰ and Ⅱ represent the binding modes of boscalid with wild-type or P225F mutant BcSDH, respectively. Ⅲ and Ⅳ represent the binding modes of compound 7e with wild-type or P225F mutant BcSDH, respectively. The yellow, green, purple, and red dotted lines in the binding modes represent hydrophobic interaction, hydrogen bond, π-cation and π-π stacking interaction, respectively.

    表  1  目标化合物在10 μg/mL下对植物病原真菌的抑菌活性

    Table  1.   The antifungal activity of hybrid molecules against pathogenic fungi at 10 μg/mL

    化合物
    Compound
    平均抑制率 ± SD
    Mean inhibition rate ± SD/%
    茄链格孢菌
    A. solani
    灰葡萄孢
    B. cinerea
    山茶炭疽菌
    C. camelliae
    尖孢镰刀菌
    F. oxysporum
    立枯丝核菌
    R. solani
    香芹酚 carvacrol55.59 ± 4.24 gh30.75 ± 0.35 mn8.68 ± 0.79 a9.77 ± 1.24 ab23.19 ± 1.14 j
    百里香酚 thymol56.19 ± 2.65 gh28.22 ± 3.81 kl15.79 ± 0.73 hij16.20 ± 1.20 ij31.98 ± 2.49 k
    6a47.50 ± 1.41 ef23.63 ± 3.68 ij16.55 ± 2.41 ijk15.83 ± 0.07 ij16.20 ± 2.74 gh
    6b39.32 ± 2.13 ab26.63 ± 2.28 k15.41 ± 2.38 hij14.78 ± 0.43 hi5.63 ± 1.40 a
    6c47.49 ± 2.11 ef19.08 ± 1.36 gh17.42 ± 1.10 jk12.40 ± 0.86 def12.83 ± 1.63 cdefg
    6d62.95 ± 1.56 jk20.65 ± 2.55 hi16.84 ± 1.79 ijk12.66 ± 1.35 defg10.79 ± 2.30 bc
    6e73.97 ± 1.33 m34.40 ± 1.03 o14.28 ± 0.75 efgh14.61 ± 1.44 ghi21.93 ± 1.92 ij
    6f69.07 ± 0.14 l16.95 ± 1.13 fg11.64 ± 0.83 bcd11.54 ± 1.31 bcdef19.23 ± 4.61 hi
    6g43.05 ± 1.21 cd19.65 ± 1.63 gh11.37 ± 1.15 bc20.04 ± 0.54 mn43.89 ± 1.56 m
    6h48.61 ± 1.69 ef13.44 ± 0.37 cde14.37 ± 0.42 fgh10.09 ± 1.16 abc6.22 ± 1.50 a
    6i40.50 ± 1.57 bc22.05 ± 2.13 hi14.28 ± 1.18 efgh19.00 ± 0.72 klm34.45 ± 1.56 k
    6j50.15 ± 0.70 f15.03 ± 0.63 def12.65 ± 1.26 cdef8.64 ± 1.83 a13.33 ± 1.08 cdefg
    6k58.73 ± 1.31 hi21.64 ± 0.36 hi13.65 ± 0.37 defgh12.49 ± 1.00 def10.66 ± 1.26 bc
    6l36.10 ± 2.42 a9.58 ± 0.67 ab14.02 ± 1.18 efgh12.01 ± 1.73 cdef18.81 ± 1.94 hi
    6m38.42 ± 1.86 ab7.36 ± 1.91 a12.17 ± 0.84 bcde11.06 ± 2.72 bcde12.15 ± 0.86 cdef
    6n50.28 ± 1.25 f38.08 ± 1.22 p13.22 ± 1.11 cdefg16.97 ± 1.18 jk24.54 ± 3.40 j
    6o39.31 ± 0.51 ab19.64 ± 3.55 gh9.25 ± 1.58 a11.54 ± 1.31 bcdef14.47 ± 4.40 defg
    7a64.92 ± 2.52 jk34.60 ± 0.13 o24.61 ± 0.20 n12.47 ± 0.05 def12.15 ± 1.69 cdef
    7b65.51 ± 2.82 jk32.47 ± 0.71 no27.74 ± 1.35 op11.74 ± 0.05 bcdef10.32 ± 0.65 bc
    7c62.54 ± 1.91 jk32.93 ± 0.76 no29.32 ± 0.17 p15.89 ± 0.78 ij10.32 ± 0.69 bc
    7d73.34 ± 0.76 m45.01 ± 1.61 q24.07 ± 1.34 n18.58 ± 1.47 klm6.42 ± 0.41 a
    7e74.53 ± 1.03 m65.17 ± 0.89 r31.42 ± 0.38 q19.31 ± 0.34 lm13.76 ± 1.33 cdefg
    7f61.92 ± 2.87 ij31.28 ± 1.21 n24.86 ± 1.70 n15.89 ± 1.07 ij11.23 ± 1.69 bcde
    7g43.11 ± 0.38 cd27.72 ± 0.96 kl17.28 ± 0.67 ijk20.54 ± 0.74 mn45.19 ± 1.22 m
    7h62.36 ± 2.21 jk17.31 ± 1.06 fg18.36 ± 0.51 kl15.86 ± 0.61 ij15.55 ± 0.95 fg
    7i48.44 ± 0.50 ef30.09 ± 1.60 lmn19.75 ± 0.83 lm21.53 ± 0.63 n39.94 ± 0.69 l
    7j55.04 ± 1.96 g10.93 ± 1.16 bc21.34 ± 0.39 m13.22 ± 0.99 fgh46.89 ± 1.19 m
    7k58.72 ± 2.28 hi18.90 ± 1.35 gh10.42 ± 0.04 ab10.58 ± 0.50 abcd11.78 ± 1.05 bcde
    7l39.36 ± 2.34 ab25.56 ± 0.96 jk15.25 ± 0.47 ghi18.51 ± 1.35 klm14.73 ± 1.24 efg
    7m36.54 ± 0.57 a15.84 ± 0.76 ef12.50 ± 0.81 bcdef12.96 ± 0.33 efgh6.52 ± 1.80 a
    7n73.93 ± 1.13 m78.50 ± 1.11 s27.25 ± 0.50 o23.84 ± 0.90 o22.94 ± 1.42 j
    7o43.90 ± 1.35 d23.07 ± 2.38 ij25.00 ± 1.04 n17.59 ± 0.70 jkl8.22 ± 1.33 ab
    注:同列数据具有不同小写字母表示各处理在P = 0.05水平上差异显著。Note: Data in the same column with different lowercase letters indicate significant difference at the level of 5%.
    下载: 导出CSV

    表  2  目标化合物在50 μg/mL下对植物病原真菌的抑菌活性

    Table  2.   The antifungal activity of hybrid molecules against pathogenic fungi at 50 μg/mL

    化合物
    Compound
    平均抑制率 ± SD
    Mean inhibition rate ± SD/%
    茄链格孢菌
    A. solani
    灰葡萄孢
    B. cinerea
    山茶炭疽菌
    C. camelliae
    尖孢镰刀菌
    F. oxysporum
    立枯丝核菌
    R. solani
    香芹酚 carvacrol74.56 ± 2.13 ij65.00 ± 0.54 klm40.79 ± 2.19 pq47.49 ± 1.10 q69.14 ± 0.31 n
    百里香酚 thymol87.00 ± 1.57 o64.48 ± 3.03 kl61.32 ± 0.64 t61.17 ± 1.33 r70.78 ± 1.33 n
    6a68.20 ± 1.46 h32.62 ± 2.38 f27.13 ± 1.47 h26.65 ± 0.79 lm43.25 ± 1.45 j
    6b78.12 ± 1.74 kl34.91 ± 2.09 fg23.98 ± 2.27 fg28.50 ± 0.13 n26.62 ± 0.08 fg
    6c62.38 ± 0.78 e25.27 ± 1.00 cd25.43 ± 0.21 gh21.11 ± 0.42 f33.32 ± 2.42 h
    6d77.83 ± 0.69 k64.59 ± 0.74 kl21.13 ± 1.54 de20.84 ± 0.36 f37.83 ± 0.99 i
    6e84.68 ± 0.24 no63.64 ± 0.84 k38.62 ± 0.67 no25.93 ± 1.28 klm48.91 ± 1.61 k
    6f84.10 ± 0.36 n66.59 ± 0.75 lmn22.74 ± 1.82 ef20.98 ± 1.35 f26.70 ± 2.21 fg
    6g72.55 ± 2.40 i26.77 ± 1.64 d17.46 ± 1.52 c21.44 ± 1.86 f54.22 ± 0.50 l
    6h62.08 ± 0.57 e16.86 ± 0.37 b15.14 ± 0.83 b14.42 ± 0.12 bc11.11 ± 0.70 a
    6i57.40 ± 2.13 cd29.61 ± 2.92 e31.71 ± 1.11 i24.27 ± 1.13 jk60.81 ± 0.82 m
    6j62.70 ± 1.55 e29.84 ± 1.03 e19.60 ± 0.48 d13.45 ± 1.39 ab18.88 ± 1.92 c
    6k67.59 ± 0.55 gh25.28 ± 0.60 cd17.37 ± 0.83 c20.91 ± 1.07 f14.88 ± 1.30 b
    6l39.87 ± 1.59 a11.54 ± 1.05 a17.46 ± 0.74 c12.25 ± 1.30 a31.70 ± 2.53 h
    6m50.87 ± 1.14 b13.76 ± 0.92 a13.23 ± 0.55 a12.02 ± 1.10 a18.24 ± 1.08 c
    6n75.13 ± 1.46 j67.56 ± 0.98 mn30.42 ± 1.07 i29.00 ± 1.46 n48.09 ± 3.10 k
    6o57.78 ± 2.04 d22.83 ± 3.51 c16.67 ± 0.74 bc15.56 ± 1.01 cd28.03 ± 0.41 g
    7a80.53 ± 0.62 lm66.81 ± 1.85 lmn47.38 ± 0.63 r37.41 ± 0.16 p38.76 ± 1.59 i
    7b80.81 ± 1.56 m63.74 ± 0.40 k47.38 ± 0.21 r24.20 ± 0.65 ijk28.44 ± 0.94 g
    7c78.13 ± 0.94 kl62.80 ± 0.72 k42.40 ± 1.67 q25.67 ± 0.11 kl21.79 ± 1.49 d
    7d82.30 ± 1.81 mn76.30 ± 0.44 o33.77 ± 0.40 jk32.76 ± 1.02 o36.92 ± 1.52 i
    7e77.86 ± 1.29 k68.00 ± 1.51 n51.05 ± 0.61 s37.16 ± 0.37 p42.89 ± 0.50 j
    7f76.33 ± 1.08 jk66.82 ± 1.30 lmn37.16 ± 1.39 mn18.83 ± 0.39 e23.62 ± 0.45 de
    7g56.27 ± 1.00 cd39.81 ± 0.84 h32.19 ± 1.00 ij32.03 ± 0.38 o70.64 ± 0.68 n
    7h62.08 ± 0.46 e35.31 ± 0.35 g25.06 ± 0.75 g18.74 ± 1.31 e24.65 ± 3.38 ef
    7i54.95 ± 1.25 c43.66 ± 0.88 i35.00 ± 0.38 kl27.54 ± 1.45 mn68.56 ± 0.72 n
    7j74.32 ± 2.17 ij35.99 ± 1.03 g36.72 ± 2.16 lmn23.31 ± 0.92g hij75.11 ± 0.42 o
    7k63.29 ± 1.95 ef24.14 ± 1.36 cd16.38 ± 0.68 bc21.87 ± 1.64 fgh32.66 ± 1.78 h
    7l57.49 ± 2.06 cd39.82 ± 1.02 h27.13 ± 0.29 h22.46 ± 0.54 fghi38.53 ± 1.83 i
    7m50.70 ± 1.29 b18.55 ± 0.75 b16.75 ± 0.47 bc16.21 ± 0.90 d11.33 ± 1.78 a
    7n80.73 ± 0.68 m78.51 ± 0.36 o39.50 ± 0.69 op33.33 ± 0.46 o49.86 ± 0.88 k
    7o63.46 ± 0.57 ef53.85 ± 0.70 j36.00 ± 0.16 lm21.76 ± 0.68 fg23.23 ± 1.41 de
    注:同列数据具有不同小写字母表示各处理在P = 0.05水平上差异显著。Note: Data in the same column with different lowercase letters indicate significant difference at the level of 5%.
    下载: 导出CSV

    表  3  化合物对茄链格孢菌和灰葡萄孢的毒力测定

    Table  3.   Toxicity test of compounds to A. solani and B. cinerea

    靶标菌
    Pathogen
    化合物
    Compound
    回归方程
    Regression equation
    相关系数
    Correlation coefficient, r
    EC50/
    (μg/mL)
    95% 置信区间
    95% Confidence limit/(μg/mL)
    茄链格孢菌
    A. solani
    啶酰菌胺 boscalidy = 0.53x − 0.340.990.230.18~0.31
    6dy = 0.91x − 0.790.967.246.12~8.45
    6ey = 0.64x − 0.660.9810.768.66~13.32
    6fy = 0.66x − 0.660.9410.238.26~12.61
    7dy = 0.75x − 0.400.993.402.55~4.30
    7ey = 0.53x − 0.280.993.282.12~4.51
    7fy = 0.75x − 0.600.996.215.00~7.52
    灰葡萄孢
    B. cinerea
    啶酰菌胺 boscalidy = 0.49x − 0.500.9910.287.70~13.58
    7dy = 1.17x − 1.460.9617.6515.59~20.16
    7ey = 1.32x − 1.560.9715.0612.75~17.95
    7ny = 1.39x − 1.770.9718.6515.67~22.56
    下载: 导出CSV
  • [1] Fungicide Resistance Action Commitee. FRAC Code List ©*2021: Fungal control agents sorted by cross resistance pattern and mode of action (including coding for FRAC Groups on product labels) [EB/OL]. 2021, [2022-02-13].https://www.frac.info
    [2] 魏阁, 高梦琪, 朱晓磊, 等. 靶向琥珀酸脱氢酶的酰胺类杀菌剂的研究进展[J]. 农药学学报, 2019, 23(5-6): 673-680.

    WEI G, GAO M Q, ZHU X L, et al. Research progress on carboxamide fungicides targeting succinate dehydrogenase[J]. Chin J Pestic Sci, 2019, 23(5-6): 673-680.
    [3] 党铭铭, 刘民华, 柳爱平, 等. 琥珀酸脱氢酶抑制剂类杀菌剂的最新研究进展[J]. 农药, 2020, 59(6): 391-396.

    DANG M M, LIU M H, LIU A P, et al. The latest research progress of succinate dehydrogenase inhibitor fungicides[J]. Agrochemicals, 2020, 59(6): 391-396.
    [4] 詹家绥, 吴娥娇, 刘西莉, 等. 植物病原真菌对几类重要单位点杀菌剂的抗药性分子机制[J]. 中国农业科学, 2014, 47(17): 3392-3404. doi: 10.3864/j.issn.0578-1752.2014.17.007

    ZHAN J S, WU E J, LIU X L, et al. Molecular basis of resistance of phytopathogenic fungi to several site-specific fungicides[J]. Sci Agric Sinica, 2014, 47(17): 3392-3404. doi: 10.3864/j.issn.0578-1752.2014.17.007
    [5] HU M J, FERNÁNDEZ-ORTUÑO D, SCHNABEL G. Monitoring resistance to SDHI fungicides in Botrytis cinerea from strawberry fields[J]. Plant Dis, 2016, 100(5): 959-965. doi: 10.1094/PDIS-10-15-1210-RE
    [6] ZUNIGA A I, OLIVEIRA M S, REBELLO C S, et al. Baseline sensitivity of Botrytis cinerea isolates from strawberry to isofetamid compared to other SDHIs[J]. Plant Dis, 2020, 104(4): 1224-1230. doi: 10.1094/PDIS-06-19-1140-RE
    [7] AVENOT H F, THOMAS A, GITAITIS R D, et al. Molecular characterization of boscalid-and penthiopyrad-resistant isolates of Didymella bryoniae and assessment of their sensitivity to fluopyram[J]. Pest Manag Sci, 2012, 68(4): 645-651. doi: 10.1002/ps.2311
    [8] 陶丽红, 李佳俊, 夏美荣, 等. 五种琥珀酸脱氢酶抑制剂类杀菌剂与灰葡萄孢琥珀酸脱氢酶的结合模式及抗性机制分析[J]. 农药学学报, 2021, 23(6): 1085-1096.

    TAO L H, LI J J, XIA M R, et al. Analysis of the binding modes and resistance mechanism of five succinate dehydrogenase inhibitor fungicides with Botrytis cinerea succinate dehydrogenase[J]. Chin J Pestic Sci, 2021, 23(6): 1085-1096.
    [9] LI H, GAO M Q, CHEN Y, et al. Discovery of pyrazine-carboxamide-diphenyl-ethers as novel succinate dehydrogenase inhibitors via fragment recombination[J]. J Agric Food Chem, 2020, 68(47): 14001-14008. doi: 10.1021/acs.jafc.0c05646
    [10] XIONG L, LI H, JIANG L N, et al. Structure-based discovery of potential fungicides as succinate ubiquinone oxidoreductase inhibitors[J]. J Agric Food Chem, 2017, 65(5): 1021-1029. doi: 10.1021/acs.jafc.6b05134
    [11] WEI G, HUANG M W, WANG W J, et al. Expanding the chemical space of succinate dehydrogenase inhibitors via the carbon-silicon switch strategy[J]. J Agric Food Chem, 2021, 69(13): 3965-3971. doi: 10.1021/acs.jafc.0c07322
    [12] SINGH G, MAURYA S. Antimicrobial, antifungal and insecticidal investigations on essential oils: an overview[J]. Nat Prod Radiance, 2005, 4(3): 179-192.
    [13] DAVARI M, EZAZI R. Chemical composition and antifungal activity of the essential oil of Zhumeria majdae, Heracleum persicum and Eucalyptus sp. against some important phytopathogenic fungi[J]. J Mycol Med, 2017, 27(4): 463-468. doi: 10.1016/j.mycmed.2017.06.001
    [14] ZHANG Z L, XIE Y J, HU X, et al. Antifungal activity of monoterpenes against Botryosphaeria dothidea[J]. Nat Prod Commun, 2018, 13(12): 1721-1724.
    [15] ZHANG Z L, YANG T, MI N, et al. Antifungal activity of monoterpenes against wood white-rot fungi[J]. Int Biodeterior Biodegrad, 2016, 106: 157-160. doi: 10.1016/j.ibiod.2015.10.018
    [16] SHABAN S, PATEL M, AHMAD A. Improved efficacy of antifungal drugs in combination with monoterpene phenols against Candida auris[J]. Sci Rep, 2020, 10(1): 1162. doi: 10.1038/s41598-020-58203-3
    [17] ZHAO Y, YANG Y H, YE M, et al. Chemical composition and antifungal activity of essential oil from Origanum vulgare against Botrytis cinerea[J]. Food Chem, 2021, 365: 130506. doi: 10.1016/j.foodchem.2021.130506
    [18] WANG K B, JIANG S S, YANG Y H, et al. Synthesis and antifungal activity of carvacrol and thymol esters with heteroaromatic carboxylic acids[J]. Nat Prod Res, 2019, 33(13): 1924-1930. doi: 10.1080/14786419.2018.1480618
    [19] 李爱军, 郝红茹. 醚菌胺的合成[J]. 农药, 2016, 55(5): 324-327.

    LI A J, HAO H R. Synthesis of dimoxystrobin[J]. Agrochemicals, 2016, 55(5): 324-327.
    [20] 王凯博. 单萜酚衍生物的合成及抗植物病原菌活性研究[D]. 云南农业大学, 2017.

    WANG K B. Study on synthesis and antifungal activity of phenolic monoterpene derivatives against phytopathogens[D]. Yunnan agricultural unniversity, 2017.
    [21] BEENA, KUMAR D, RAWAT D S. Synthesis and antioxidant activity of thymol and carvacrol based Schiff bases[J]. Bioorg & Med Chem Lett, 2013, 23(3): 641-645.
    [22] 李佳俊, 陶丽红, 叶敏, 等. 天然酚类化合物与两种化学杀菌剂的联合抑菌活性研究[J]. 中国农学通报, 2021, 37(14): 150-157. doi: 10.11924/j.issn.1000-6850.casb2020-0656

    Li J J, Tao L H, Ye M, et al. Synergistic antifungal activity of natural phenolic compounds and two chemical fungicides[J]. Chin Agric Sci Bull, 2021, 37(14): 150-157. doi: 10.11924/j.issn.1000-6850.casb2020-0656
    [23] 刘晓漫. 紫茎泽兰中倍半萜化合物的抗菌活性、作用机理及水解规律研究[D]. 北京: 中国农业科学院, 2016.

    LIU X M. Antimicrobial activity, mechanism against pathogen and hydrolysis of sesquiterpenoids from Eupatorium adenophorum spreng[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016.
    [24] CHERRY J H. Molecular biology of plant a text-manual[M]. Beijing: Science Press, 1979.
    [25] CHENG J G, LUO X M, YAN X H, et al. Research progress in cation-π interactions[J]. Sci China Ser B Chem, 2008, 51(8): 709-717. doi: 10.1007/s11426-008-0082-8
    [26] CHANDLER D. Hydrophobicity: two faces of water[J]. Nature, 2002, 417(6888): 491. doi: 10.1038/417491a
    [27] DILL K A. The meaning of hydrophobicity[J]. Science, 1990, 250(4978): 297-298. doi: 10.1126/science.250.4978.297.b
    [28] TEIXEIRA A, NÓBREGA R O, LIMA E O, et al. Antifungal activity study of the monoterpene thymol against Cryptococcus neoformans[J]. Nat Prod Res, 2020, 34(18): 2630-2633. doi: 10.1080/14786419.2018.1547296
    [29] CHURKLAM W, CHATURONGAKUL S, NGAMWONGSATIT B, et al. The mechanisms of action of carvacrol and its synergism with nisin against Listeria monocytogenes on sliced bologna sausage[J]. Food Control, 2020, 108: 106864. doi: 10.1016/j.foodcont.2019.106864
    [30] JUNG K W, CHUNG M S, BAI H W, et al. Investigation of antifungal mechanisms of thymol in the human fungal pathogen, Cryptococcus neoformans[J]. Molecules, 2021, 26(11): 3476. doi: 10.3390/molecules26113476
    [31] ZHU X L, XIONG L, LI H, et al. Computational and experimental insight into the molecular mechanism of carboxamide inhibitors of succinate-ubquinone oxidoreductase[J]. ChemMedChem, 2014, 9(7): 1512-1521. doi: 10.1002/cmdc.201300456
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  10
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-14
  • 录用日期:  2022-03-29
  • 网络出版日期:  2022-05-26
  • 刊出日期:  2022-08-03

目录

    /

    返回文章
    返回