Advances in studies on the chemotaxis of root-knot nematodes
-
摘要: 植物寄主根部及其根际微生物等释放的化学信号物质在根结线虫寻找寄主、配偶及逃避危险等行为中起着重要的作用。目前,明确根结线虫预侵染阶段的化学信号物质以及相关的分子靶标,以期开发得到植物源和微生物源引诱剂及驱避剂,是国际线虫学研究领域的前沿和热点。本文重点综述了根结线虫的趋化性及化学信号物质,概括了线虫诱饵效应与诱捕现象的研究进展,概述了平面琼脂及其改进模型、Pluronic凝胶模型以及沙土/土壤模型在根结线虫趋化性测试中的应用,讨论了根结线虫趋化性研究的意义和难度,并对未来根结线虫趋化性研究的主要方向及前景进行了总结和展望。Abstract: Allelochemical signaling substances released by host roots and rhizosphere microbes play an important role in the host-seeking, mate-searching, and danger escape of root-knot nematodes (RKNs). At present, in order to develop chemoattractants and repellents of plant and microbial sources, it is an international hotspot and frontier for nematologists to identify semiochemicals and related molecular targets in the pre-infection stage of RKNs. This review focused on the chemotaxis and allelochemicals of RKNs, including attractive and repellent compounds, and summarized the progress on Trojan horse mechanism and trapping formation of RKNs. Furthermore, the application of the chemotactic models, including the plate agar and its modified model, Pluronic gel model, and the sand/soil model, on the nematodes chemotaxis test were summarized. Finally, the significance and challenge of the research on RKNs chemotaxis were discussed, and research directions on RKNs chemotaxis in the future were prospected.
-
Key words:
- root-knot nematode /
- chemotaxis /
- semiochemicals /
- nematode-trapping formation /
- chemotactic model /
- chemoattractants /
- repellents
-
表 1 对根结线虫具有引诱作用的植物源化合物
Table 1. Plant-derived compounds with attractant properties toward root-knot nematodes
化合物
Compound来源植物
Plant source模型种类 (活性浓度),
用量
Model type
(active concentration), dosage报道时间/
线虫种类
Published time/
Nematode
species化学结构
Chemical structureα-蒎烯
α-Pinene辣椒
Capsicum annum沙土/土壤
Sand/soil model
(20~80 ng/μL),2 mL[12]2017/
M. incognita柠檬烯
Limonene辣椒
C. annum沙土/土壤
Sand/soil model
(20~80 ng/μL),2 mL[12]2017/
M. incognita2-甲氧基-3-(1-甲基丙基)-吡嗪
2-Methoxy-3-(1-methylpropyl)-pyrazine辣椒
C. annum;
番茄
Solanum lycopersicum;
菠菜
Spinacea oleracea沙土/土壤
Sand/soil model
(>80 ng/μL),2 mL[12];
沙土/土壤
Sand/soil model
(>160 ng/μL),50 μL[13]2017, 2018/
M. incognita水杨酸甲酯
Methyl salicylate辣椒
C. annum;
番茄
S. lycopersicum沙土/土壤
Sand/soil model
(20~80 ng/μL),2 mL[12];
沙土/土壤
Sand/soil model
(40~160 ng/μL),50 μL[13];
普朗尼克凝胶
Pluronic gel
(50~200 μg/mL),1 mL[15]2017, 2018, 2020/
M. incognita十三烷
Tridecane辣椒
C. annum;
番茄
S. lycopersicum;
菠菜
S. oleracea沙土/土壤
Sand/soil model
(40~80 ng/μL),2 mL[12];
沙土/土壤
Sand/soil model
(80~160 ng/μL),50 μL[13];
1% 琼脂
1% agar
(10−3~102 mg/mL),10 μL[17]2017, 2018, 2021/
M. incognita2-异丙基-3-甲氧基吡嗪
2-Isopropyl-3 methoxy-pyrazine菠菜
S. oleracea沙土/土壤
Sand/soil model
(40~160 ng/μL),50 μL[13]2018/
M. incognita玉米素
Zeatin (cytokinin)番茄
S. lycopersicum沙土/土壤
Sand/soil model
(16~4000 μg/g ) [14]2018/
M. incognita木樨草素
Luteolin番茄
S. lycopersicum沙土/土壤
Sand/soil model
(16 μg/g) [14]2018/
M. incognita槲皮素
Quercetin番茄
S. lycopersicum沙土/土壤
Sand/soil model
(16~249.2 μg/g) [14]2018/
M. incognita番茄碱
Tomatine番茄
S. lycopersicum沙土/土壤
Sand/soil model
(16~62.4 μg/g) [14]2018/
M. incognita茄碱
Solasodine番茄
S. lycopersicum沙土/土壤
Sand/soil model
(16 μg/g沙土) [14]2018/
M. incognitaL-抗坏血酸-2,6-二棕榈酸酯
L-Ascorbyl 2,6-dipalmitate番茄
S. lycopersicum普朗尼克凝胶
Pluronic gel
(50~200 μg/mL),1 mL[15]2020/
M. incognita邻苯二甲酸二丁酯
Butyl phthalate番茄
S. lycopersicum普朗尼克凝胶
Pluronic gel
(50~200 μg/mL),1 mL[15]2020/
M. incognita棕榈酸
Palmitic acid番茄
S. lycopersicum普朗尼克凝胶
Pluronic gel
(50~200 μg/mL),1 mL[15]2020/
M. incognita壬二酸
Azelaic acid番茄
S.lycopersicum普朗尼克凝胶
Pluronic gel
(50~200 μg/mL),1 mL[15]2020/
M. incognita癸二酸
Sebacic acid番茄
S. lycopersicum普朗尼克凝胶
Pluronic gel
(50~200 μg/mL),1 mL[15]2020/
M. incognita对羟基苯甲酸
4-Hydroxybenzoic acid番茄
S. lycopersicum普朗尼克凝胶
Pluronic gel
(50~100 μg/mL),1 mL[15]2020/
M. incognita肉桂酸
Cinnamic acid番茄
S. lycopersicum普朗尼克凝胶
Pluronic gel
(50~200 μg/mL),1 mL[15]2020/
M. incognita阿魏酸
Ferulic acid番茄
S. lycopersicum普朗尼克凝胶
Pluronic gel
(50~200 μg/mL),1 mL[15]2020/
M. incognitaβ-蒎烯
β-Pinene番茄
S. lycopersicum沙土/土壤
Sand/soil model
(55, 110 ng/μL),50 μL[16]2020/
M. javanica(+)-(2)-蒈烯
(+)-(2)-Carene番茄
S. lycopersicum沙土/土壤
Sand/soil model
(682 ng/μL),50 μL[16]2020/
M. javanicaα-水芹烯
α-Phellandrene番茄
S. lycopersicum沙土/土壤
Sand/soil model
(110~220 ng/μL),50 μL[16]2020/
M. javanicaβ-水芹烯
β-Phellandrene番茄
S. lycopersicum沙土/土壤
Sand/soil model
(>220 ng/μL),50 μL[16]2020/
M. javanicaα-L-半乳糖-1,3-L-鼠李糖
α-L-Galactosyl-1,3-L-rhamnose亚麻
Linum usitatissimum普朗尼克凝胶
Pluronic gel
(>150 mmol/L),1 μL[5]2021/
M. incognita1-二十二碳烯
1-Docosene小白菜
Brassica chinensis;
番茄
S. lycopersicum;
萝卜等
Raphanus sativus; et al1% 琼脂
1% agar
(10−3 mg/mL),10 μL[17]2021/
M. incognita1-十八烯
1-Octadecene小白菜
B. chinensis;
番茄
S. lycopersicum;
萝卜等
R. sativus; et al1% 琼脂
1% agar
(10−6~102 mg/mL),10 μL[17]2021/
M. incognita2-己基-1-癸醇
2-Hexyl-1-decanol小白菜
B. chinensis;
番茄
S. lycopersicum;
黄瓜
Cucumis
sativus1% 琼脂
1% agar
(10−6~102 mg/mL),10 μL[17]2021/
M. incognita苹果酸
Malic acid小白菜
B. chinensis;
番茄
S. lycopersicum;
小米椒等
Capsicum frutescens; et al1% 琼脂
1% agar
(10−2~102 mg/mL),10 μL[17]2021/
M. incognita草酸
Oxalic acid小米椒
C. frutescens;
萝卜等
R. sativus; et al1% 琼脂
1% agar
(10−2~10−1 mg/mL),10 μL[17]2021/
M. incognita乳酸
Lactic acid小白菜
B. chinensis;
番茄
S. lycopersicum;
萝卜等
R. sativus; et al1% 琼脂
1% agar
(10−2~102 mg/mL),10 μL[17]2021/
M. incognita表 2 对根结线虫具有引诱作用的微生物源化合物
Table 2. Microbial compounds with attractant properties toward root-knot nematodes
化合物
Compound来源微生物
Microbial source模型种类 (活性浓度),用量
Model type (active concentration), dosage报道时间/线虫种类
Published time/Nematode species化学结构
Chemical structure二苯并呋喃
Dibenzofuran链霉菌
Streptomyces plicatus沙土/土壤
Sand/soil model
(10~30 μg/g) [22]2019/
M. incognita乙基苯
Ethylbenzene独岛枝芽胞杆菌
Virgibacillus dokdonensis2% 琼脂
2% agar
(1~10 mg/mL),30 μL[23]2020/
M. incognita二甲基二硫醚
Dimethyl disulfide独岛枝芽胞杆菌
V. dokdonensis2% 琼脂
2% agar
(1~10 mg/mL),30 μL[23]2020/
M. incognita乙醛
Acetaldehyde独岛枝芽胞杆菌
V. dokdonensis2% 琼脂
2% agar
(1~10 mg/mL),30 μL[23]2020/
M. incognita糠醛丙酮
Furfural acetone多粘类芽孢杆菌
Paenibacillus polymyxa普朗尼克凝胶
Pluronic gel
(20~60 mg/mL),30 μL[24]2021/
M. incognita表 3 对根结线虫具有引诱作用的合成类化学物
Table 3. Synthetic chemicals with attractant properties toward root-knot nematodes
化合物
Compound模型种类 (活性浓度),用量
Model type
(active concentration),
dosage报道时间/线虫种类
Published time/
Nematode specie化学结构
Chemical structure1,3-二氨基丙烷
1,3-Diaminopropane普朗尼克凝胶
Pluronic gel
(100 mmol/L),1 μL[28]2020/M. incognita 腐胺
Putrescine普朗尼克凝胶
Pluronic gel
(100 mmol/L),1 μL[28]2020/M. incognita 尸胺
Cadaverine普朗尼克凝胶
Pluronic gel
(100 mmol/L),1 μL[28]2020/M. incognita 2-甲氧基肉桂醛
2-Methoxycinnamaldehyde沙土/土壤
Sand/soil model
(10 mg/mL),10 μL[29]2021/M. incognita,
M. javanica,
M. marylandi,
M. hapla2-羟基苯甲酸
2-Hydroxybenzoic acid (salicylic acid)沙土/土壤
Sand/soil model
(10 mg/mL),10 μL[29]2021/M. incognita,
M. javanica,
M. marylandi2-羟基-3-甲氧基苯甲醛
2-Hydroxy-3-methoxybenzaldehyde沙土/土壤
Sand/soil model
(10 mg/mL),10 μL[29]2021/M. marylandi,
M. hapla3-甲氧基苯甲酸
3-Methoxybenzoic acid沙土/土壤
Sand/soil model
(10 mg/mL),10 μL[29]2021/M. incognita,
M. javanica,
M. marylandi,
M. hapla4-甲氧基苯甲酸
4-Methoxybenzoic acid沙土/土壤
Sand/soil model
(10 mg/mL),10 μL[29]2021/M. incognita,
M. javanica,
M. marylandi,
M. hapla反式肉桂酸
Trans-cinnamic acid沙土/土壤
Sand/soil model
(10 mg/mL),10 μL[29]2021/M. incognita,
M. javanica表 4 对根结线虫具有驱避作用的植物源化合物
Table 4. Plant-derived compounds with repellent properties toward root-knot nematodes
化合物
Compound来源植物
Plant source模型种类 (活性浓度),用量
Model type
(active concentration),
dosage报道时间/线虫种类
Published time/
Nematode species化学结构
Chemical structure月桂酸
Lauric acid冠雏菊
Chrysanthemum coronarium2% 琼脂
2% agar
(4 mmol/L),10 μL[33]2014/
M. incognita百里香酚
Thymol辣椒
C. annum沙土/土壤
Sand/soil model
(40~80 ng/μL),2 mL[12]2017/
M. incognita棕榈酸
Palmitic acid蓖麻
Ricinus communis2% 琼脂
2% agar
(0.5~4.0 mmol/L),50 μL[34]2018/
M. incognita亚油酸
Linoleic acid蓖麻
R. communis2% 琼脂
2% agar
(0.5~4.0 mmol/L),50 μL[34]2018/
M. incognita棕榈酸甲酯
Methyl palmitate木薯
Manihot esculenta1% 琼脂
1% agar
(1~16 mmol/kg),20 μL[35]2020/
M. incognita硬脂酸甲酯
Methyl stearate木薯
M. esculenta1% 琼脂
1% agar
(1~16 mmol/kg),20 μL[35]2020/
M. incognita二氢辣椒碱
Dihydrocapsaicin番茄
S. lycopersicum普朗尼克凝胶
Pluronic gel
(100~200 μg/mL),1 mL[15]2020/
M. incognita澳洲茄胺
Solasodine番茄
S. lycopersicum普朗尼克凝胶
Pluronic gel
(100~200 μg/mL),1 mL[15]2020/
M. incognita1-二十二碳烯
1-Docosene小白菜
B. chinensis;
番茄
S. lycopersicum;
萝卜等
R. sativus; et al1% 琼脂
1% agar
(10−2~102 mg/mL),10 μL[17]2021/
M. incognita表 5 对根结线虫具有驱避作用的微生物源化合物
Table 5. Microbial compounds with repellent properties toward root-knot nematodes
化合物
Compound来源微生物
Microbial source模型种类 (活性浓度),用量
Model type
(active concentration),
dosage报道时间/线虫种类
Published time/
Nematode species化学结构
Chemical structure二甲基二硫醚
Dimethyl-disulfide恶臭假单胞菌
Pseudomonas putida2% 琼脂
2% agar
(1~10000 mg/L) [37]2018/
M. incognita1-十一烯
1-Undecene恶臭假单胞菌
P. putida2% 琼脂
2% agar
(1~10000 mg/L) [37]2018/
M. incognita2-壬酮
2-Nonanone恶臭假单胞菌
P. putida2% 琼脂
2% agar
(1~10000 mg/L) [37]2018/
M. incognita2-辛酮
2-Octanone恶臭假单胞菌
P. putida2% 琼脂
2% agar
(1~10000 mg/L) [37]2018/
M. incognita(Z)-己烯-1-乙酸醇
(Z)-Hexen-1-ol acetate恶臭假单胞菌
P. putida2% 琼脂
2% agar
(1~10000 mg/L) [37]2018/
M. incognita2-十一酮
2-Undecanone恶臭假单胞菌
P. putida2% 琼脂
2% agar
(1~10000 mg/L) [37]2018/
M. incognita1-(乙烯氧基)-十八烷
1-(Ethenyloxy)-octadecane恶臭假单胞菌
P. putida2% 琼脂
2% agar
(1~10000 mg/L) [37]2018/
M. incognita苯并噻唑
Benzothiazole链霉菌
S. plicatus沙土/土壤
Sand/soil model
(10~30 μg/g) [22]2019/
M. incognita2-丁酮
2-Butanone独岛枝芽胞杆菌
V. dokdonensis2% 琼脂
2% agar
(1~10 mg/mL),30 μL[23]2020/
M. incognita -
[1] GAMALERO E, GLICK B R. The use of plant growth-promoting bacteria to prevent nematode damage to plants[J]. Biology, 2020, 9(11): 381. doi: 10.3390/biology9110381 [2] JONES J T, HAEGEMAN A, DANCHIN E G J, et al. Top 10 plant-parasitic nematodes in molecular plant pathology[J]. Mol Plant Pathol, 2013, 14(9): 946-961. doi: 10.1111/mpp.12057 [3] 郑雅楠, 杨忠岐, 王小艺, 等. 植物寄生线虫的化学趋性[J]. 生态学杂志, 2014, 33(3): 837-842. doi: 10.13292/j.1000-4890.2014.0079ZHENG Y N, YANG Z Q, WANG X Y, et al. Chemotaxis of plant parasitic nematodes: a review[J]. Chin J Ecol, 2014, 33(3): 837-842. doi: 10.13292/j.1000-4890.2014.0079 [4] REYNOLDS A M, DUTTA T K, CURTIS R H C, et al. Chemotaxis can take plant-parasitic nematodes to the source of a chemo-attractant via the shortest possible routes[J]. J R Soc Interface, 2011, 8(57): 568-577. doi: 10.1098/rsif.2010.0417 [5] TSAI A Y L, IWAMOTO Y, TSUMURAYA Y, et al. Root-knot nematode chemotaxis is positively regulated by l-galactose sidechains of mucilage carbohydrate rhamnogalacturonan-I[J]. Sci Adv, 2021, 7(27): eabh4182. doi: 10.1126/sciadv.abh4182 [6] BANERJEE N, HALLEM E A. The role of carbon dioxide in nematode behaviour and physiology[J]. Parasitology, 2020, 147(8): 841-854. doi: 10.1017/S0031182019001422 [7] SHIVAKUMARA T N, DUTTA T K, CHAUDHARY S, et al. Homologs of Caenorhabditis elegans chemosensory genes have roles in behavior and chemotaxis in the root-knot nematode Meloidogyne incognita[J]. Mol Plant Microbe Interact, 2019, 32(7): 876-887. doi: 10.1094/MPMI-08-18-0226-R [8] ROLANDN P, MAURICE M. 植物线虫学[M]. 简恒, 译. 北京: 中国农业大学出版社, 2011.RONLANDN P, MAURICE M. Plant nematology[M]. JIAN H. Translated. Beijing: China Agricultural University Press, 2011. [9] 李春杰, 王从丽. 植物寄生线虫对化感信号的识别及机制[J]. 生物技术通报, 2021, 37(7): 35-44. doi: 10.13560/j.cnki.biotech.bull.1985.2021-0514LI C J, WANG C L. Recognition mechanism of plant-parasitic nematodes in response to semiochemicals[J]. Biotechnol Bull, 2021, 37(7): 35-44. doi: 10.13560/j.cnki.biotech.bull.1985.2021-0514 [10] BEEMAN A Q, NJUS Z L, PANDEY S, et al. Chip technologies for screening chemical and biological agents against plant-parasitic nematodes[J]. Phytopathology, 2016, 106(12): 1563-1571. doi: 10.1094/PHYTO-06-16-0224-R [11] VESTERGÅRD M. Trap crops for Meloidogyne hapla management and its integration with supplementary strategies[J]. Appl Soil Ecol, 2019, 134: 105-110. doi: 10.1016/j.apsoil.2018.10.012 [12] KIHIKA R, MURUNGI L K, COYNE D, et al. Parasitic nematode Meloidogyne incognita interactions with different Capsicum annum cultivars reveal the chemical constituents modulating root herbivory[J]. Sci Rep, 2017, 7: 2903. doi: 10.1038/s41598-017-02379-8 [13] MURUNGI L K, KIRWA H, COYNE D, et al. Identification of key root volatiles signaling preference of tomato over spinach by the root knot nematode Meloidogyne incognita[J]. J Agric Food Chem, 2018, 66(28): 7328-7336. doi: 10.1021/acs.jafc.8b03257 [14] KIRWA H K, MURUNGI L K, BECK J J, et al. Elicitation of differential responses in the root-knot nematode Meloidogyne incognita to tomato root exudate cytokinin, flavonoids, and alkaloids[J]. J Agric Food Chem, 2018, 66(43): 11291-11300. doi: 10.1021/acs.jafc.8b05101 [15] KUANG M S, LIU T T, WU H B, et al. Constituents leached by tomato seeds regulate the behavior of root-knot nematodes and their antifungal effects against seed-borne fungi[J]. J Agric Food Chem, 2020, 68(34): 9061-9069. doi: 10.1021/acs.jafc.0c01797 [16] KIHIKA R, TCHOUASSI D P, NG'ANG'A M M, et al. Compounds associated with infection by the root-knot nematode, Meloidogyne javanica, influence the ability of infective juveniles to recognize host plants[J]. J Agric Food Chem, 2020, 68(34): 9100-9109. doi: 10.1021/acs.jafc.0c03386 [17] WANG J X, DING Z J, BIAN J, et al. Chemotaxis response of Meloidogyne incognita to volatiles and organic acids from root exudates[J]. Rhizosphere, 2021, 17: 100320. doi: 10.1016/j.rhisph.2021.100320 [18] WANG C L, BRUENING G, WILLIAMSON V M. Determination of preferred pH for root-knot nematode aggregation using pluronic F-127 gel[J]. J Chem Ecol, 2009, 35(10): 1242-1251. doi: 10.1007/s10886-009-9703-8 [19] FLEMING T R, MAULE A G, FLEMING C C. Chemosensory responses of plant parasitic nematodes to selected phytochemicals reveal long-term habituation traits[J]. J Nematol, 2017, 49(4): 462-471. [20] LI L, YANG M, LUO J, et al. Nematode-trapping fungi and fungus-associated bacteria interactions: the role of bacterial diketopiperazines and biofilms on Arthrobotrys oligospora surface in hyphal morphogenesis[J]. Environ Microbiol, 2016, 18(11): 3827-3839. doi: 10.1111/1462-2920.13340 [21] YERGALIYEV T M, ALEXANDER-SHANI R, DIMERETS H, et al. Bacterial community structure dynamics in Meloidogyne incognita-infected roots and its role in worm-microbiome interactions[J]. mSphere, 2020, 5(4): e00306-e00320. [22] WANG P Y, SUN Y, YANG L L, et al. Chemotactic responses of the root-knot nematode Meloidogyne incognita to Streptomyces plicatus[J]. FEMS Microbiol Lett, 2019, 366(19): fnz234. doi: 10.1093/femsle/fnz234 [23] HUANG D, YU C, SHAO Z Z, et al. Identification and characterization of nematicidal volatile organic compounds from deep-sea Virgibacillus dokdonensis MCCC 1A00493[J]. Molecules, 2020, 25(3): 744. doi: 10.3390/molecules25030744 [24] CHENG W L, CHEN Z, ZENG L, et al. Control of Meloidogyne incognita in three-dimensional model systems and pot experiments by the attract-and-kill effect of furfural acetone[J]. Plant Dis, 2021, 105(8): 2169-2176. doi: 10.1094/PDIS-07-20-1501-RE [25] HIDA H, NISHIYAMA H, SAWA S, et al. Chemotaxis assay of plant-parasitic nematodes on a gel-filled microchannel device[J]. Sens Actuat B Chem, 2015, 221: 1483-1491. doi: 10.1016/j.snb.2015.07.081 [26] SHIVAKUMARA T N, DUTTA T K, RAO U. A novel in vitro chemotaxis bioassay to assess the response of Meloidogyne incognita towards various test compounds[J]. J Nematol, 2018, 50(4): 487-494. doi: 10.21307/jofnem-2018-047 [27] SOBKOWIAK R, BOJARSKA N, KRZYŻANIAK E, et al. Chemoreception of botanical nematicides by Meloidogyne incognita and Caenorhabditis elegans[J]. J Environ Sci Health B, 2018, 53(8): 493-502. doi: 10.1080/03601234.2018.1462936 [28] OOTA M, TSAI A Y L, AOKI D, et al. Identification of naturally occurring polyamines as root-knot nematode attractants[J]. Mol Plant, 2020, 13(4): 658-665. doi: 10.1016/j.molp.2019.12.010 [29] OKA Y. Aromatic compounds that attract Meloidogyne species second-stage juveniles in soil[J]. Pest Manag Sci, 2021, 77(10): 4288-4297. doi: 10.1002/ps.6506 [30] TOYODA S, OOTA M, ISHIKAWA H, et al. Calcium sulfate and calcium carbonate as root-knot-nematode attractants and possible trap materials to protect crop plants[J]. Plant Biotechnol(Tokyo), 2021, 38(1): 157-159. doi: 10.5511/plantbiotechnology.20.0806a [31] 刘一婧, 杜丽娜, 金义光. 驱避剂及其剂型的研究进展[J]. 国际药学研究杂志, 2020, 47(12): 1104-1112. doi: 10.13220/j.cnki.jipr.2020.12.012LIU Y J, DU L N, JIN Y G. Progress in repellents and their formulations[J]. J Int Pharm Res, 2020, 47(12): 1104-1112. doi: 10.13220/j.cnki.jipr.2020.12.012 [32] CHITWOOD D J. Phytochemical based strategies for nematode control[J]. Annu Rev Phytopathol, 2002, 40: 221-249. doi: 10.1146/annurev.phyto.40.032602.130045 [33] DONG L L, LI X L, HUANG L, et al. Lauric acid in crown daisy root exudate potently regulates root-knot nematode chemotaxis and disrupts Mi-flp-18 expression to block infection[J]. J Exp Bot, 2014, 65(1): 131-141. doi: 10.1093/jxb/ert356 [34] DONG L L, LI X L, HUANG C D, et al. Reduced Meloidogyne incognita infection of tomato in the presence of castor and the involvement of fatty acids[J]. Sci Hortic, 2018, 237: 169-175. doi: 10.1016/j.scienta.2018.03.066 [35] LU Q F, LIU T T, WANG N Q, et al. Nematicidal effect of methyl palmitate and methyl stearate against Meloidogyne incognita in bananas[J]. J Agric Food Chem, 2020, 68(24): 6502-6510. doi: 10.1021/acs.jafc.0c00218 [36] 胡海静. 植物内生芽孢杆菌对南方根结线虫的防治研究[D]. 南京: 南京师范大学, 2017. DOI: 10.27245/d.cnki.gnjsu.2017.000215.HU H J. Study on the control of endophytic Bacillus against Meloidogyne incognita[D]. Nanjing: Nanjing Normal University, 2017. DOI: 10.27245/d.cnki.gnjsu.2017.000215. [37] ZHAI Y L, SHAO Z Z, CAI M M, et al. Multiple modes of nematode control by volatiles of Pseudomonas putida 1A00316 from Antarctic soil against Meloidogyne incognita[J]. Front Microbiol, 2018, 9: 253. doi: 10.3389/fmicb.2018.00253 [38] 赵晓曼. 贝莱斯芽孢杆菌Bv-25对南方根结线虫的生防作用分析[D]. 新乡: 河南科技学院, 2021. DOI: 10.27704/d.cnki.ghnkj.2021.000074.ZHAO X M. Analysis of the biocontrol efficacy of Bacillus velezensis strain Bv-25 against Meloidogyne incognita[D]. Xinxiang: Henan Institute of Science and Technology, 2021. [39] NIU Q H, HUANG X W, ZHANG L, et al. A Trojan horse mechanism of bacterial pathogenesis against nematodes[J]. Proc Natl Acad Sci USA, 2010, 107(38): 16631-16636. doi: 10.1073/pnas.1007276107 [40] BIAN J, ZHANG H L, MENG S, et al. Chemotaxis of Caenorhabditis elegans toward volatile organic compounds from Stropharia rugosoannulata induced by amino acids[J]. J Nematol, 2018, 50(1): 3-8. doi: 10.21307/jofnem-2018-003 [41] WAISEN P, SIPES B S, WANG K H. Potential of biofumigant cover crops as open-end trap crops against root-knot and reniform nematodes[J]. Nematropica, 2019, 49(2): 254-264. [42] SACCHI S, TORRINI G, MARIANELLI L, et al. Control of Meloidogyne graminicola a root-knot nematode using rice plants as trap crops: preliminary results[J]. Agriculture, 2021, 11(1): 37. doi: 10.3390/agriculture11010037 [43] AJITOMI A, TABA S, AJITOMI Y, et al. Efficacy of a simple formulation composed of nematode-trapping fungi and Bidens pilosa var. radiata scherff aqueous extracts (BPE) for controlling the southern root-knot nematode[J]. Microbes Environ, 2018, 33(1): 4-9. doi: 10.1264/jsme2.ME17110 [44] CHENG W L, YANG J Y, NIE Q Y, et al. Volatile organic compounds from Paenibacillus polymyxa KM2501-1 control Meloidogyne incognita by multiple strategies[J]. Sci Rep, 2017, 7: 16213. doi: 10.1038/s41598-017-16631-8 [45] HASTUTI L D S, FAULL J. Wheat bran soil inoculant of sumateran nematode-trapping fungi as biocontrol agents of the root-knot nematode Meloidogyne incognita on deli tobacco (Nicotiana tabaccum L.) cv. deli 4[J]. IOP Conf Ser: Earth Environ Sci 2018, 130: 012009. [46] JIANG X Z, XIANG M C, LIU X Z. Nematode-trapping fungi[J]. Microbiol Spectr, 2017, 5(1): FUNK-0022-2016. [47] CASTRO C E, BELSER N O, MCKINNEY H E, et al. Quantitative bioassay for chemotaxis with plant parasitic nematodes: attractant and repellent fractions for Meloidogyne incognita from cucumber roots[J]. J Chem Ecol, 1989, 15(4): 1297-1309. doi: 10.1007/BF01014831 [48] CASTRO C E, BELSER N O, MCKINNEY H E, et al. Strong repellency of the root knot nematode, Meloidogyne incognita by specific inorganic ions[J]. J Chem Ecol, 1990, 16(4): 1199-1205. doi: 10.1007/BF01021019 [49] Le SAUX R, QUÉNÉHERVE P. Differential chemotactic responses of two plant-parasitic nematodes, Meloidogyne incognita and Rotylenchulus reniformis, to some inorganic ions[J]. Nematology, 2002, 4(1): 99-105. doi: 10.1163/156854102760082258 [50] 孟丽, 漆永红, 刘玉霞, 等. 南方根结线虫二龄幼虫对不同类型盐离子的趋化反应[J]. 植物保护, 2014, 40(2): 85-89. doi: 10.3969/j.issn.0529-1542.2014.02.016MENG L, QI Y H, LIU Y X, et al. Chemotaxis of the second stage juveniles of Meloidogyne incognita in response to different salt ions[J]. Plant Prot, 2014, 40(2): 85-89. doi: 10.3969/j.issn.0529-1542.2014.02.016 [51] SPIEGEL Y, BURROWS P M, BAR-EYAL M. A chemo attractant in onion root exudates recognized by Ditylenchus dipsaci in laboratory bioassay[J]. Phytopathology, 2003, 93(1): 127-132. doi: 10.1094/PHYTO.2003.93.1.127 [52] OKA Y. Screening of chemical attractants for second-stage juveniles of Meloidogyne species on agar plates[J]. Plant Pathol, 2021, 70(4): 912-921. doi: 10.1111/ppa.13336 [53] WANG Z W, LEE I, JEON T J, et al. Micro-/nanofluidic device for tunable generation of a concentration gradient: application to Caenorhabditis elegans chemotaxis[J]. Anal Bioanal Chem, 2014, 406(11): 2679-2686. doi: 10.1007/s00216-014-7663-5 [54] O'HALLORAN D M. NemaCount: quantification of nematode chemotaxis behavior in a browser[J]. Invertebr Neurosci, 2016, 16(2): 5. doi: 10.1007/s10158-016-0188-1 [55] 王从丽, 李春杰, 胡岩峰. 利用Pluronic三维胶系统研究植物寄生线虫的趋化性[J]. 土壤与作物, 2016, 5(1): 1-13. doi: 10.11689/j.issn.2095-2961.2016.01.001WANG C L, LI C J, HU Y F. Pluronic gel system: an approach to investigate chemotaxis of plant parasitic nematodes[J]. Soils Crops, 2016, 5(1): 1-13. doi: 10.11689/j.issn.2095-2961.2016.01.001 [56] WANG C L, LOWER S, WILLIAMSON V. Application of Pluronic gel to the study of root-knot nematode behaviour[J]. Nematology, 2009, 11(3): 453-464. doi: 10.1163/156854109X447024 [57] HUA C, LI C J, JIANG Y, et al. Response of soybean cyst nematode (Heterodera glycines) and root-knot nematodes (Meloidogyne spp. ) to gradients of pH and inorganic salts[J]. Plant Soil, 2020, 455(1): 305-318. [58] 丁正蛟. 七种植物根系分泌物对南方根结线虫趋化性的作用[D]. 昆明: 云南大学, 2018.DING Z J. Chemotaxis of Meloidogyne incognita to root exudates from seven plants[D]. Kunming: Yunnan University, 2018. [59] ČEPULYTĖ R, DANQUAH W B, BRUENING G, et al. Potent attractant for root-knot nematodes in exudates from seedling root tips of two host species[J]. Sci Rep, 2018, 8: 10847. doi: 10.1038/s41598-018-29165-4 [60] 漆永红, 孟丽, 吕和平, 等. 盐类对南方根结线虫迁移能力和侵入能力的影响[J]. 植物保护学报, 2015, 42(4): 639-644. doi: 10.13802/j.cnki.zwbhxb.2015.04.024QI Y H, MENG L, LÜ H P, et al. Effect of salts on motility and infectivity of Meloidogyne incognita[J]. J Plant Prot, 2015, 42(4): 639-644. doi: 10.13802/j.cnki.zwbhxb.2015.04.024 -