• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

农药雾滴雾化沉积飘失研究进展

王潇楠 齐鹏 于聪伟 何雄奎

王潇楠, 齐鹏, 于聪伟, 何雄奎. 农药雾滴雾化沉积飘失研究进展[J]. 农药学学报, 2022, 24(5): 1065-1079. doi: 10.16801/j.issn.1008-7303.2022.0111
引用本文: 王潇楠, 齐鹏, 于聪伟, 何雄奎. 农药雾滴雾化沉积飘失研究进展[J]. 农药学学报, 2022, 24(5): 1065-1079. doi: 10.16801/j.issn.1008-7303.2022.0111
WANG Xiaonan, QI Peng, YU Congwei, HE Xiongkui. Research and development of atomization, deposition and drift of pesticide droplets[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 1065-1079. doi: 10.16801/j.issn.1008-7303.2022.0111
Citation: WANG Xiaonan, QI Peng, YU Congwei, HE Xiongkui. Research and development of atomization, deposition and drift of pesticide droplets[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 1065-1079. doi: 10.16801/j.issn.1008-7303.2022.0111

农药雾滴雾化沉积飘失研究进展

doi: 10.16801/j.issn.1008-7303.2022.0111
基金项目: 国家自然科学基金(31761133019);国家现代农业产业技术体系(CARS-28-20,CARS-32-13)
详细信息
    作者简介:

    王潇楠,wangxiaonan@gdaas.cn

    齐鹏,qi-peng@139.com

    通讯作者:

    何雄奎,xiongkui@cau.edu.cn

  • 中图分类号: S252.3;TQ450.1

Research and development of atomization, deposition and drift of pesticide droplets

Funds: the National Natural Science Foundation of China (31761133019); China Agriculture Research System (CARS-28-20, CARS-32-13).
  • 摘要: 农药、植保机械与施药技术为植物化学保护的三大支柱,其中施药技术是连接农药学科和植保机械学科的关键环节,是农药从研发到田间应用的“最后一公里”。农药科学使用并不是一个简单的选择农药和施药量的药物学问题,而是涉及作物学、植物保护学、农业工程学、气象学等多学科交叉的系统工程。本文就农药雾滴雾化与运动特性、沉积与分布状态、流失与飘失行为,以及害虫行为与农药雾滴雾化运动和沉积分布关系等方面的研究进展展开综述,总结该方面的理论与实践经验,可为提高植保机械水平与施药质量、提高农药利用率与防治效果、减轻农药负面影响、提高粮食与食品安全提供参考。
  • 图  1  农药雾化沉积全程及影响因素

    Figure  1.  Pesticide atomization deposition process and the influence of its factors

    图  2  液膜破碎形成喷雾雾滴的原理图[27]

    Figure  2.  Schematic of a plane liquid sheet breakup leading to spray formation[27]

    图  3  雾滴形成方式[36]

    Figure  3.  Droplet breakup method[36]

    图  4  Cassie 润湿模型[48]

    Figure  4.  Cassie wetting model[48]

    图  5  Cassie-Baxter模型[49]

    Figure  5.  Cassie-Baxter Model[49]

    图  6  润湿方式[50]

    a. Cassieair捕获;b. Wenzel方式;c. Cassie浸渍;d. 混合方式。       

    Figure  6.  Wetting regimes[50]

    a. The Cassieair-trapping; b. The Wenzel; c. The Cassie impregnating; d. Mixed.

    图  7  不同大小雾滴在靶标上的沉积方式[24]

    a. 破裂/弹跳;b. 雾滴沉积 (最佳喷雾粒径);c. 雾滴流失/飘失 (细与及极细雾滴);d. 雾滴流失 (大与特大细雾滴)。

    Figure  7.  The deposition mode of different size of droplets on the target[24]

    a. Rupture/bounce; b. Droplet deposition (optimum spray size); c. Droplet loss/drift (fine and very fine droplets); d. Droplet loss (large & extra fine droplets).

    图  8  液滴变形过程示意图[53]

    a. 黏附;b. 反弹;c. 铺展;d. 沸腾破碎;e. 反弹破碎;f. 破碎;g.飞溅。

    Figure  8.  Schematic diagram of droplet deformation process[53]

    a. Adherence; b. Rebound; c. Spread out; d. Boiling crushing; e. Rebound crushing; f. Crushing; g. Splash.

    图  9  雾滴聚并的几种不同情况[72]

    Figure  9.  Several different cases of droplet aggregation[72]

    图  10  自然风速下雾滴飘失

    a. 自然顺风;b. 自然侧风;c. 顺风飘失;d. 侧风飘失;e. 蒸发飘失;f. 飘失。

    Figure  10.  Droplet drift at natural wind speed

    a. Natural downwind; b. Natural sidewind; c. Downwind drift; d. Sidewind drift; e. Vapor drift; f. Drift loss.

  • [1] MAHMOOD I, IMADI S R, SHAZADI K, et al. Effects of pesticides on environment[M]//Plant, soil and microbes. Springer, Cham, 2016: 253-269.
    [2] SINGH B, AWASTHI A M, SINGH D P. Effects of pesticides on environment and human health[J]. Inter J Modern Agric, 2021, 10(2): 4089-4095.
    [3] 屠豫钦. 农药剂型和制剂与农药的剂量转移[J]. 农药学学报, 1999, 1(1): 1-6.

    TU Y Q. Pesticide formulation and dose transfer[J]. Chin J Pestic Sci, 1999, 1(1): 1-6.
    [4] 郑加强, 张慧春, 徐幼林, 等. 农药喷雾全过程性能分析及其测试技术研究进展[J]. 林业工程学报, 2022, 7(1): 1-10.

    ZHENG J Q, ZHANG H C, XU Y L, et al. Development and prospect on performance analysis and measurement techniques of pesticide spraying process[J]. J For Eng, 2022, 7(1): 1-10.
    [5] WANG C, ZHU H X, LI N J, et al. Dinotefuran nano-pesticide with enhanced valid duration and controlled release properties based on a layered double hydroxide nano-carrier[J]. Environ Sci: Nano, 2021, 8(11): 3202-3210. doi: 10.1039/D1EN00661D
    [6] AYLOR D E. Microclimate and spray dispersion[J]. Agr Forest Meteorol, 1993, 66(3-4).
    [7] DORR G J, HANAN J, WOODS N, et al. Combining spray drift and plant architecture modeling to minimise environmental and public health risk of pesticide application[C/OL]//Modsim 2005: International Congress on Modelling and Simulation: Advances and Applications for Management and Decision Making. Univ Western Australia, 2005: 279-285. [2022-08-15]. https://espace.library.uq.edu.au/view/UQ:102486
    [8] EBERT T A, TAYLOR R A, DOWNER R A, et al. Deposit structure and efficacy of pesticide application. 1: Interactions between deposit size, toxicant concentration and deposit number[J]. Pestic Sci, 1999, 55(8): 783-792. doi: 10.1002/(SICI)1096-9063(199908)55:8<783::AID-PS973>3.0.CO;2-D
    [9] 我国三大粮食作物化肥农药利用率双双超40%[EB/OL]. 中华人民共和国农业农村部. (2021-01-19) [2022-09-02]http://www.kjs.moa.gov.cn/gzdt/202101/t20210119_6360102.htm.

    China’s three major food crops of chemical fertilizer and pesticide utilization rate of double over 40%[EB/OL]. Ministry of Agriculture and Rural Affairs of the People’s Republic China. (2021) (2021-01-19) [2022-09-02]http://www.kjs.moa.gov.cn/gzdt/202101/t20210119_6360102.htm.
    [10] 何雄奎. 中国植保机械与施药技术研究进展[J]. 农药学学报, 2019, 21(Z1): 921-930. doi: 10.16801/j.issn.1008-7303.2019.0089

    HE X K. Research and development of crop protection machinery and chemical application technology in China[J]. Chin J Pestic Sci, 2019, 21(Z1): 921-930. doi: 10.16801/j.issn.1008-7303.2019.0089
    [11] 柳越, 杨建辉, 蔡玉奎, 等. 微型喷嘴的雾化性能及加工技术研究进展[J]. 工具技术, 2021, 55(3): 3-13.

    LIU Y, YANG J H, CAI Y K, et al. Research progress on atomization performance and machining technology of micro-nozzle[J]. Tool Eng, 2021, 55(3): 3-13.
    [12] TUCK C R, ELLIS M C B, MILLER P C H. Techniques for measurement of droplet size and velocity distributions in agricultural sprays[J]. Crop Prot, 1997, 16(7): 619-628. doi: 10.1016/S0261-2194(97)00053-7
    [13] 薛士东, 奚溪, 史浩楠, 等. 农用喷头雾化后的空间粒径分布与速度演化特征研究[J]. 世界农药, 2020, 42(7): 5-10.

    XUE S D, XI X, SHI H N, et al. Spatial diameter and velocity distributions of spray droplets produced by agricultural nozzle[J]. World Pestic, 2020, 42(7): 5-10.
    [14] 康峰, 吴潇逸, 王亚雄, 等. 农药雾滴沉积特性研究进展与展望[J]. 农业工程学报, 2021, 37(20): 1-14.

    KANG F, WU X Y, WANG Y X, et al. Research progress and prospect of pesticide droplet deposition characteristics[J]. Trans Chin Soc Agric Eng, 2021, 37(20): 1-14.
    [15] 许小龙, 徐广春, 徐德进, 等. 植物表面特性与农药雾滴行为关系的研究进展[J]. 江苏农业学报, 2011, 27(1): 214-218.

    XU X L, XU G C, XU D J, et al. Research progress on the relationship between characteristics of plant surface and behavior patterns of pesticide droplet[J]. Jiangsu J Agric Sci, 2011, 27(1): 214-218.
    [16] 宋玉莹, 曹冲, 徐博, 等. 农药雾滴在植物叶面的弹跳行为及调控技术研究进展[J]. 农药学学报, 2019, 21(Z1): 895-907. doi: 10.16801/j.issn.1008-7303.2019.0110

    SONG Y Y, CAO C, XU B, et al. Research progress on bouncing behavior and control technology of pesticide droplets at plant leaf surface[J]. Chin J Pestic Sci, 2019, 21(Z1): 895-907. doi: 10.16801/j.issn.1008-7303.2019.0110
    [17] 刘雪美, 刘兴华, 崔慧媛, 等. 作物冠层雾滴沉积研究进展与展望[J]. 农业机械学报, 2021, 52(11): 1-20.

    LIU X M, LIU X H, CUI H Y, et al. Research progress and trend analysis of crop canopy droplet deposition[J]. Trans Chin Soc Agric Mach, 2021, 52(11): 1-20.
    [18] 刘晓慧, 袁亮亮, 石鑫, 等. 植保施药机械喷雾雾滴飘移研究进展[J]. 农药学学报, 2022, 24(2): 232-247. doi: 10.16801/j.issn.1008-7303.2021.0166

    LIU X H, YUAN L L, SHI X, et al. Research progress on spray drift of droplets of plant protection machainery[J]. Chin J Pestic Sci, 2022, 24(2): 232-247. doi: 10.16801/j.issn.1008-7303.2021.0166
    [19] 邓巍, 丁为民, 何雄奎. 变量喷施技术及其雾化特性评价方法综述[J]. 中国农业大学学报, 2009, 14(3): 94-102. doi: 10.3321/j.issn:1007-4333.2009.03.017

    DENG W, DING W M, HE X K. Technologies and evaluation methodology of variable spray[J]. J China Agric Univ, 2009, 14(3): 94-102. doi: 10.3321/j.issn:1007-4333.2009.03.017
    [20] 徐旻, 张瑞瑞, 陈立平, 等. 智能化无人机植保作业关键技术及研究进展[J]. 智慧农业, 2019, 1(2): 20-33.

    XU M, ZHANG R R, CHEN L P, et al. Key technology analysis and research progress of UAV intelligent plant protection[J]. Smart Agric, 2019, 1(2): 20-33.
    [21] 牛萌萌, 方会敏, 康建明, 等. 果园施药关键技术研究进展[J]. 中国农机化学报, 2021, 42(3): 48-59.

    NIU M M, FANG H M, KANG J M, et al. Research progress on key technology of orchard spraying[J]. J Chin Agric Mech, 2021, 42(3): 48-59.
    [22] 郑永军, 陈炳太, 吕昊暾, 等. 中国果园植保机械化技术与装备研究进展[J]. 农业工程学报, 2020, 36(20): 110-124. doi: 10.11975/j.issn.1002-6819.2020.20.014

    ZHENG Y J, CHEN B T, LYU H T, et al. Research progress of orchard plant protection mechanization technology and equipment in China[J]. Trans Chin Soc Agric Eng, 2020, 36(20): 110-124. doi: 10.11975/j.issn.1002-6819.2020.20.014
    [23] 郑加强, 徐幼林. 环境友好型农药喷施机械研究进展与展望[J]. 农业机械学报, 2021, 52(3): 1-16. doi: 10.6041/j.issn.1000-1298.2021.03.001

    ZHENG J Q, XU Y L. Development and prospect in environment-friendly pesticide sprayers[J]. Trans Chin Soc Agric Mach, 2021, 52(3): 1-16. doi: 10.6041/j.issn.1000-1298.2021.03.001
    [24] 何雄奎. 药械与施药技术[M]. 北京: 中国农业大学出版社, 2013.

    HE X K. Plant protection machinery and pesticide application technology[M]. Beijing: China Agricultural University Press, 2013.
    [25] 焦雨轩, 薛新宇, 丁素明. 施药喷嘴的喷洒性能研究现状及展望[J]. 中国农机化学报, 2021, 42(12): 44-50,56.

    JIAO Y X, XUE X Y, DING S M. Research status and prospects of spraying performance of spray nozzles[J]. J Chin Agric Mech, 2021, 42(12): 44-50,56.
    [26] CROSS J V, WALKLATE P J, MURRAY R A, et al. Spray deposits and losses in different sized apple trees from an axial fan orchard sprayer: 3. Effects of air volumetric flow rate[J]. Crop Prot, 2003, 22(2): 381-394. doi: 10.1016/S0261-2194(02)00192-8
    [27] NEGEED E S R, HIDAKA S, KOHNO M, et al. Experimental and analytical investigation of liquid sheet breakup characteristics[J]. Int J Heat Fluid Flow, 2011, 32(1): 95-106. doi: 10.1016/j.ijheatfluidflow.2010.08.005
    [28] DOMBROWSKI N, FRASER R P. A photographic investigation into the disintegration of liquid sheets[J]. Philosophical Trans Royal Soc of London. Series A, Mathematical and Physical Sciences, 1954, 247(924): 101-130.
    [29] CARVALHO I S, HEITOR M V, SANTOS D. Liquid film disintegration regimes and proposed correlations[J]. Int J Multiph Flow, 2002, 28(5): 773-789. doi: 10.1016/S0301-9322(01)00088-X
    [30] MATSUUCHI K. Instability of thin liquid sheet and its break-up[J]. J Physi Soc Japan, 1976, 41(4): 1410-1416. doi: 10.1143/JPSJ.41.1410
    [31] 宋坚利. “Π”型循环喷雾机及其药液循环利用与飘失研究[D]. 北京: 中国农业大学, 2007.

    SONG J L. Research on “Π” type circulating sprayer and its liquid recycling and drift loss[D]. Beijing: China Agricultural University, 2007.
    [32] 谢晨, 何雄奎, 宋坚利, 等. 两类扇形雾喷头雾化过程比较研究[J]. 农业工程学报, 2013, 29(5): 25-30.

    XIE C, HE X K, SONG J L, et al. Comparative research of two kinds of flat fan nozzle atomization process[J]. Trans Chin Soc Agric Eng, 2013, 29(5): 25-30.
    [33] 张文君, 何雄奎, 宋坚利, 等. 助剂S240对水分散性粒剂及乳油药液雾化的影响[J]. 农业工程学报, 2014, 30(11): 61-67. doi: 10.3969/j.issn.1002-6819.2014.11.008

    ZHANG W J, HE X K, SONG J L, et al. Effect of adjuvant S240 on atomization of water dispersible granule and emulsion solution[J]. Trans Chin Soc Agric Eng, 2014, 30(11): 61-67. doi: 10.3969/j.issn.1002-6819.2014.11.008
    [34] SIRIGNANO W A, MEHRING C. Review of theory of distortion and disintegration of liquid streams[J]. Prog Energy Combust Sci, 2000, 26(4-6): 609-655. doi: 10.1016/S0360-1285(00)00014-9
    [35] THARAKAN T J, RAMAMURTHI K, BALAKRISHNAN M. Nonlinear breakup of thin liquid sheets[J]. Acta Mech, 2002, 156(1-2): 29-46. doi: 10.1007/BF01188740
    [36] SHINJO J, UMEMURA A. Detailed simulation of primary atomization mechanisms in Diesel jet sprays (isolated identification of liquid jet tip effects)[J]. Proc Combust Inst, 2011, 33(2): 2089-2097. doi: 10.1016/j.proci.2010.07.006
    [37] BUTLER ELLIS M C, TUCK C R, MILLER P C H. How surface tension of surfactant solutions influences the characteristics of sprays produced by hydraulic nozzles used for pesticide application[J]. Colloids Surf A Physicochem Eng Aspects, 2001, 180(3): 267-276. doi: 10.1016/S0927-7757(00)00776-7
    [38] THOMPSON J C, ROTHSTEIN J P. The atomization of viscoelastic fluids in flat-fan and hollow-cone spray nozzles[J]. J Non Newton Fluid Mech, 2007, 147(1-2): 11-22. doi: 10.1016/j.jnnfm.2007.06.004
    [39] 王士林, 何雄奎, 宋坚利, 等. 双极性接触式航空机载静电喷雾系统荷电与喷雾效果试验[J]. 农业工程学报, 2018, 34(7): 82-89. doi: 10.11975/j.issn.1002-6819.2018.07.011

    WANG S L, HE X K, SONG J L, et al. Charging and spraying performance test of bipolar contact electrostatic spraying system for unmanned aerial vehicle[J]. Trans Chin Soc Agric Eng, 2018, 34(7): 82-89. doi: 10.11975/j.issn.1002-6819.2018.07.011
    [40] 曲荣佳. 航空转笼喷头喷施生物农药试验研究[D]. 南京: 南京林业大学, 2020.

    QU R J. Experimental research on aerial rotary nozzle spraying biological pesticide[D]. Nanjing: Nanjing Forestry University, 2020.
    [41] BALS T M. Economical pesticide application: the reasons for controlled droplet application[M]. Philadelphia USA: ASTM Inter, 1987.
    [42] WALTON W H, PREWETT W C. Atomization by spinning discs[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1949, 62: 341-350.
    [43] MANTRIPRAGADA V T, SARKAR S. Prediction of drop size from liquid film thickness during rotary disc atomization process[J]. Chem Eng Sci, 2017, 158: 227-233. doi: 10.1016/j.ces.2016.10.027
    [44] BALS E J. Some observations on the basic principles involved in ultra-low-volume spray application[J]. PANS Pest Articles News Summ, 1973, 19(2): 193-200. doi: 10.1080/09670877309412755
    [45] 李永娜. 八旋翼电动遥控飞行植保机雾滴沉积飘失特性研究[D]. 北京: 中国农业大学, 2015.

    LI Y N. Fog droplet deposition and loss characteristics of an eight-rotor electric remote control flying plant protection aircraft[D]. Beijing: China Agricultural University, 2015.
    [46] YOUNG T. III. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805(95): 65-87.
    [47] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Ind Eng Chem, 1936, 28(8): 988-994. doi: 10.1021/ie50320a024
    [48] CASSIE A B D. Contact angles[J]. Discuss Faraday Soc, 1948, 3: 11-16. doi: 10.1039/df9480300011
    [49] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Trans Faraday Soc, 1944, 40: 546-551. doi: 10.1039/tf9444000546
    [50] BORMASHENKO E. Progress in understanding wetting transitions on rough surfaces[J]. Adv Colloid Interface Sci, 2015, 222: 92-103. doi: 10.1016/j.cis.2014.02.009
    [51] MERCER G N, SWEATMAN W L, FORSTER W A. A model for spray droplet adhesion, bounce or shatter at a crop leaf surface[M]. Progress in Industrial Mathematics at ECMI 2008, 2010: 945-951.
    [52] 蒋勇, 范维澄, 廖光煊, 等. 喷雾碰壁混合三维数值模拟[J]. 中国科学技术大学学报, 2000, 30(3): 334-339. doi: 10.3969/j.issn.0253-2778.2000.03.014

    JIANG Y, FAN W C, LIAO G X, et al. Three-dimensional numerical simulation on spray wall impingement[J]. J Univ Sci Technol China, 2000, 30(3): 334-339. doi: 10.3969/j.issn.0253-2778.2000.03.014
    [53] BAI C X, GOSMAN A D. Development of methodology for spray impingement simulation[M]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995: 550-568.
    [54] 宋坚利, 王波, 曾爱军, 等. 雾滴在水稻叶片上的沉积部位分析与显微试验[J]. 农业机械学报, 2013, 44(4): 54-58. doi: 10.6041/j.issn.1000-1298.2013.04.010

    SONG J L, WANG B, ZENG A J, et al. Deposition part analysis and microscopic test of spray droplets on rice leaves[J]. Trans Chin Soc Agric Mach, 2013, 44(4): 54-58. doi: 10.6041/j.issn.1000-1298.2013.04.010
    [55] MUNDO C, TROPEA C, SOMMERFELD M. Numerical and experimental investigation of spray characteristics in the vicinity of a rigid Wall[J]. Exp Therm Fluid Sci, 1997, 15(3): 228-237. doi: 10.1016/S0894-1777(97)00015-0
    [56] YOON S S, DESJARDIN P E, PRESSER C, et al. Numerical modeling and experimental measurements of water spray impact and transport over a cylinder[J]. Int J Multiph Flow, 2006, 32(1): 132-157. doi: 10.1016/j.ijmultiphaseflow.2005.05.007
    [57] FORSTER W A, MERCER G N, SCHOU W C. Process-driven models for spray droplet shatter, adhesion or bounce[C]// Proceedings of the 9th International Symposium on Adjuvants for Agrochemicals. Freising, Germany: Technical University of Munich, 2010, 16: 20.
    [58] 谢晨. 农药雾滴雾化及在棉花叶片上的沉积特性研究[D]. 北京: 中国农业大学, 2013.

    XIE C. Characterization of pesticide droplet atomization and deposition on cotton leaves[D]. Beijing: China Agricultural University, 2013.
    [59] 张文君. 农药雾滴雾化与在玉米植株上的沉积特性研究[D]. 北京: 中国农业大学, 2014.

    ZHANG W J. The study of pesticide droplets atomization and deposit characteristics in corn leaves[D]. Beijing: China Agricultural University, 2014.
    [60] 王双双. 雾化过程与棉花冠层结构对雾滴沉积的影响[D]. 北京: 中国农业大学, 2015.

    WANG S S. Studying the influence of spray atomization process and cotton canopy structure on the droplet deposition[D]. Beijing: China Agricultural University, 2015.
    [61] PASANDIDEH-FARD M, QIAO Y M, CHANDRA S, et al. Capillary effects during droplet impact on a solid surface[J]. Phys Fluids, 1996, 8(3): 650-659. doi: 10.1063/1.868850
    [62] ZHANG L, HAN J J, LI J J, et al. Properties and spreading kinetics of water-based cypermethrin microemulsions[J]. Acta Physico-Chimica Sinica, 2013, 29(2): 346-350. doi: 10.3866/PKU.WHXB201211302
    [63] WERNER S R L, JONES J R, PATERSON A H J, et al. Droplet impact and spreading: droplet formulation effects[J]. Chem Eng Sci, 2007, 62(9): 2336-2345. doi: 10.1016/j.ces.2006.12.024
    [64] 崔洁, 陆军军, 陈雪莉, 等. 液滴高速撞击固体板面过程的研究[J]. 化学反应工程与工艺, 2008, 24(5): 390-394.

    CUI J, LU J J, CHEN X L, et al. Study of liquid droplet impacting on a solid surface with high velocity[J]. Chem React Eng Technol, 2008, 24(5): 390-394.
    [65] 陆军军, 陈雪莉, 曹显奎, 等. 液滴撞击平板的铺展特征[J]. 化学反应工程与工艺, 2007, 23(6): 505-511. doi: 10.3969/j.issn.1001-7631.2007.06.005

    LU J J, CHEN X L, CAO X K, et al. Characteristic phenomenon and analysis of a single liquid droplet impacting on dry surfaces[J]. Chem React Eng Technol, 2007, 23(6): 505-511. doi: 10.3969/j.issn.1001-7631.2007.06.005
    [66] 郝汉, 冯建国, 陈维韬, 等. 环保溶剂制备的二甲戊灵乳油在叶片表面的铺展动力学[J]. 化学工程, 2015, 43(8): 5-9. doi: 10.3969/j.issn.1005-9954.2015.08.002

    HAO H, FENG J G, CHEN W T, et al. Kinetics of pendimethalin emulsifiable concentrate prepared by eco-solvents expanding on leaf surface[J]. Chem Eng China, 2015, 43(8): 5-9. doi: 10.3969/j.issn.1005-9954.2015.08.002
    [67] 庞红宇, 张现峰, 张红艳, 等. 农药助剂溶液在靶标表面的动态润湿性[J]. 农药学学报, 2006, 8(2): 157-161.

    PANG H Y, ZHANG X F, ZHANG H Y, et al. Dynamic wettability of pesticide adjuvant solution on target[J]. Chin J Pestic Sci, 2006, 8(2): 157-161.
    [68] CHAN C C, CHEN Y C. Demulsification of W/O emulsions by microwave radiation[J]. Sep Sci Technol, 2002, 37(15): 3407-3420. doi: 10.1081/SS-120014434
    [69] 罗小明,王洪萍,何利民,等. 超声波辐照下W/O乳状液中水滴的聚并特性[J]. 石油学报(石油加工), 2015, 31(3): 803-811.

    LUO X, WANG H, HE L, et al. Coalescence characteristics of water droplets in W/O emulsion under ultrasonic irradiation[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31(3): 803-811.
    [70] 于水波. 湍流液-液分散体系中液滴聚并过程的研究[D]. 大连: 大连理工大学, 2008.

    YU S B. The study of drop coalescence in the liquid-liquid turbulent dispersions[D]. Dalian: Dalian University of Technology, 2008.
    [71] 林瑜茜.含表面活性剂液滴的聚并动力学特性[D]. 北京: 华北电力大学, 2017

    LIN Y X. Coalescence of droplets laden with insoluble surfactant[D]. Beijing: North China Electric Power University, 2017.
    [72] 何雄奎. 农药雾滴雾化沉积飘失理论与实践[M]. 北京: 化学工业出版社. 2022.

    HE X K. The theory and application: atomization, deposition and drift of pesticide droplets[M]. Beijing: Chemical Industry Press, 2022.
    [73] 胡学铮, 陈烨璞, 倪邦庆, 虞学俊. 界面现象与液滴聚并[J]. 物理化学学报, 1998, 14(2): 136-141. doi: 10.3866/PKU.WHXB19980208

    HU X Z, CHEN Y P, NI B Q, et al. Intedfacial phenomenon and coalescence[J]. Acta Physico-chimica Sinica, 1998, 14(2): 136-141. doi: 10.3866/PKU.WHXB19980208
    [74] 李佟茗, 赵丽燕. 界面流变性质对小液滴聚并过程的影响[J]. 物理化学学报, 1996, 12(8): 709-715. doi: 10.3866/PKU.WHXB19960808

    LI T M, ZHAO L Y. Effects of interfacial rheological properties on coalescence between small drops[J]. Acta Physico-chimica Sinica, 1996, 12(8): 709-715. doi: 10.3866/PKU.WHXB19960808
    [75] RAISIN J, REBOUD J L, ATTEN P. Electrically induced deformations of water-air and water-oil interfaces in relation with electrocoalescence[J]. J Electrost, 2011, 69(4): 275-283. doi: 10.1016/j.elstat.2011.03.017
    [76] RISTENPART W D, KIM P G, DOMINGUES C, et al. Influence of substrate conductivity on circulation reversal in evaporating drops[J]. Phys Rev Lett, 2007, 99(23).
    [77] HAMLIN B S, RISTENPART W D. Transient reduction of the drag coefficient of charged droplets via the convective reversal of stagnant caps[J]. Phys Fluids, 2012, 24(1): 012101. doi: 10.1063/1.3674301
    [78] ARYAFAR H, KAVEHPOUR H P. Electrocoalescence: effects of DC electric fields on coalescence of drops at planar interfaces[J]. Langmuir, 2009, 25(21): 12460-12465. doi: 10.1021/la902758u
    [79] LIU Z, WYSS H M, FERNANDEZ-NIEVES A, et al. Dynamics of oppositely charged emulsion droplets[J]. Phys Fluids, 2015, 27(8): 082003. doi: 10.1063/1.4928854
    [80] 顾中言, 许小龙, 韩丽娟. 一些药液难在水稻、小麦和甘蓝表面润湿展布的原因分析[J]. 农药学学报, 2002, 4(2): 75-80. doi: 10.3321/j.issn:1008-7303.2002.02.013

    GU Z Y, XU X L, HAN L J. The cause of the difficulty in wet-spreading of some insecticides on rice, wheat and wild cabbage leaves[J]. Chin J Pestic Sci, 2002, 4(2): 75-80. doi: 10.3321/j.issn:1008-7303.2002.02.013
    [81] SALYANI M, CROMWELL R P. Spray drift from ground and aerial applications[J]. Trans ASAE, 1992, 35(4): 1113-1120. doi: 10.13031/2013.28708
    [82] MILLER D R, STOUGHTON T E, STEINKE W E, et al. Atmospheric stability effects on pesticide drift from an irrigated orchard[J]. Trans Am Soc Agric Eng, 2000, 43(5): 1057-1066. doi: 10.13031/2013.2998
    [83] OZKAN H, MIRALLES A, SINFORT C, et al. Shields to reduce spray drift[J]. J Agric Eng Res, 1997, 67(4): 311-322. doi: 10.1006/jaer.1997.0174
    [84] MURPHY S D, MILLER P C H, PARKIN C S. The effect of boom section and nozzle configuration on the risk of spray drift[J]. J Agric Eng Res, 2000, 75(2): 127-137. doi: 10.1006/jaer.1999.0491
    [85] 曾爱军. 减少农药雾滴飘移的技术研究[D]. 北京: 中国农业大学, 2005.

    ZENG A J. Research on technique to reduce spray droplets drift[D]. Beijing: China Agricultural University, 2005.
    [86] AKESSON N B, YATES W E. Problems relating to application of agricultural chemicals and resulting drift residues[J]. Annu Rev Entomol, 1964, 9(1): 285-318. doi: 10.1146/annurev.en.09.010164.001441
    [87] GROVER R, MAYBANK J, YOSHIDA K. Droplet and vapor drift from butyl ester and dimethylamine salt of 2,4-D[J]. Weed Sci, 1972, 20(4): 320-324. doi: 10.1017/S004317450003575X
    [88] BUTLER ELLIS M C, MILLER P C H. The Silsoe Spray Drift Model: a model of spray drift for the assessment of non-target exposures to pesticides[J]. Biosyst Eng, 2010, 107(3): 169-177. doi: 10.1016/j.biosystemseng.2010.09.003
    [89] HOFFMANN W C, SALYANI M. Spray deposition on Citrus canopies under different meteorological conditions[J]. Trans ASAE, 1996, 39(1): 17-22. doi: 10.13031/2013.27475
    [90] HILZ E, VERMEER A W P. Spray drift review: the extent to which a formulation can contribute to spray drift reduction[J]. Crop Prot, 2013, 44: 75-83. doi: 10.1016/j.cropro.2012.10.020
    [91] HILZ E, VERMEER A V P, LEERMAKERS F A M, et al. Spray drift: how emulsions influence the performance of agricultural sprays produced through a conventional flat fan nozzle[J]. Aspects Appl Biol, 2011(114): 71-78.
    [92] 茹煜, 朱传银, 包瑞. 风洞条件下雾滴飘移模型与其影响因素分析[J]. 农业机械学报, 2014, 45(10): 66-72. doi: 10.6041/j.issn.1000-1298.2014.10.011

    RU Y, ZHU C Y, BAO R. Spray drift model of droplets and analysis of influencing factors based on wind tunnel[J]. Trans Chin Soc Agric Mach, 2014, 45(10): 66-72. doi: 10.6041/j.issn.1000-1298.2014.10.011
    [93] HEWITT A J. Droplet size and agricultural spraying, part i: atomization, spray transport, deposition, drift, and droplet size measurement techniques[J]. Atomiz Spr, 1997, 7(3): 235-244. doi: 10.1615/AtomizSpr.v7.i3.10
    [94] DE RUITER H, HOLTERMAN H J, KEMPENAAR C, et al. Influence of adjuvants and formulations on the emission of pesticides to the atmosphere: a literature study for the Dutch Research Programme Pesticides and the Environment (DWK) theme C-2 [J]. 2003.
    [95] NUYTTENS D, ZWERTVAEGHER I K A, DEKEYSER D. Spray drift assessment of different application techniques using a drift test bench and comparison with other assessment methods[J]. Biosyst Eng, 2017, 154: 14-24. doi: 10.1016/j.biosystemseng.2016.09.013
    [96] HOBSON P A, MILLER P C H, WALKLATE P J, et al. Spray drift from hydraulic spray nozzles: the use of a computer simulation model to examine factors influencing drift[J]. J Agric Eng Res, 1993, 54(4): 293-305. doi: 10.1006/jaer.1993.1022
    [97] WOLF R E. Drift-reducing strategies and practices for ground applications[J]. J Pestic Saf Educ, 2013, 15: 62-69.
    [98] 赵辉, 郑有飞, 徐静馨, 等. 中国典型城市大气污染物浓度时空变化特征分析[J]. 地球与环境, 2016, 44(5): 549-556.

    ZHAO H, ZHENG Y F, XU J X, et al. Temporal and spatial variations of atmospheric pollutants in typical cities in China[J]. Earth Environ, 2016, 44(5): 549-556.
    [99] ELLIS M C B, TUCK C R, MILLER P C H. The effect of some adjuvants on sprays produced by agricultural flat fan nozzles[J]. Crop Prot, 1997, 16(1): 41-50. doi: 10.1016/S0261-2194(96)00065-8
    [100] WISE J C, JENKINS P E, SCHILDER A M C, et al. Sprayer type and water volume influence pesticide deposition and control of insect pests and diseases in juice grapes[J]. Crop Prot, 2010, 29(4): 378-385. doi: 10.1016/j.cropro.2009.11.014
    [101] 张京, 李伟, 宋坚利, 等. 挡板导流式喷雾机的防飘性能试验[J]. 农业工程学报, 2008, 24(5): 140-142.

    ZHANG J, LI W, SONG J L, et al. Anti-drift performance test of guided baffle plate type sprayer[J]. Trans Chin Soc Agric Eng, 2008, 24(5): 140-142.
    [102] DE SNOO G R, DE WIT P J. Buffer zones for reducing pesticide drift to ditches and risks to aquatic organisms[J]. Ecotoxicol Environ Saf, 1998, 41(1): 112-118. doi: 10.1006/eesa.1998.1678
    [103] 王双双, 何雄奎, 宋坚利, 等. 农用喷头雾化粒径测试方法比较及分布函数拟合[J]. 农业工程学报, 2014, 30(20): 34-42.

    WANG S S, HE X K, SONG J L, et al. Measurement comparison and fitted distribution equation of droplet size for agricultural nozzles[J]. Trans Chin Soc Agric Eng, 2014, 30(20): 34-42.
    [104] DORR G J, HEWITT A J, ADKINS S W, et al. A comparison of initial spray characteristics produced by agricultural nozzles[J]. Crop Prot, 2013, 53: 109-117. doi: 10.1016/j.cropro.2013.06.017
    [105] HOFFMANN W C, HEWITT A J. Comparison of three imaging systems for water-sensitive papers[J]. Appl Eng Agric, 2005, 21(6): 961-964.
    [106] 张慧春, Dorr Gary, 郑加强, 等. 扇形喷头雾滴粒径分布风洞试验[J]. 农业机械学报, 2012, 43(6): 53-57,52.

    ZHANG H C, GARY D, ZHENG J Q, et al. Wind tunnel experiment of influence on droplet size distribution of flat fan nozzles[J]. Trans Chin Soc Agric Mach, 2012, 43(6): 53-57,52.
    [107] LAW S E. Agricultural electrostatic spray application: A review of significant research and development during the 20th century[J]. J Electrost, 2001, 51-52: 25-42. doi: 10.1016/S0304-3886(01)00040-7
    [108] ZHANG W, HOU Y R, LIU X, et al. Wind tunnel experimental study on droplet drift reduction by a conical electrostatic nozzle for pesticide spraying[J]. Int J Agric Biol Eng, 2017, 10(3): 87-94.
    [109] 杨洲, 牛萌萌, 李君, 等. 不同侧风和静电电压对静电喷雾飘移的影响[J]. 农业工程学报, 2015, 31(24): 39-45.

    YANG Z, NIU M M, LI J, et al. Influence of lateral wind and electrostatic voltage on spray drift of electrostatic sprayer[J]. Trans Chin Soc Agric Eng, 2015, 31(24): 39-45.
    [110] MAY M J. Early studies on spray drift, deposit manipulation and weed control in sugar beet with two air-assisted boom sprayers[J]. BCPC Monograph (United Kingdom), 1991, 46: 89-96.
    [111] NORDBO E, TAYLOR W A. The effect of air assistance and spray quality (drop size) on the availability, uniformity and deposition of spray on contrasting target[J]. BCPC Monograph (United Kingdom), 1991, 46: 113-124.
    [112] TSAY J R, LIANG L S, LU L H. Evaluation of an air-assisted boom spraying system under a no-canopy condition using CFD simulation[J]. Trans ASAE, 2004, 47(6): 1887-1897. doi: 10.13031/2013.17797
    [113] 祁力钧, 赵亚青, 王俊, 等. 基于CFD的果园风送式喷雾机雾滴分布特性分析[J]. 农业机械学报, 2010, 41(2): 62-67.

    QI L J, ZHAO Y Q, WANG J, et al. CFD simulation and experimental verification of droplet dispersion of air-assisted orchard sprayer[J]. Trans Chin Soc Agric Mach, 2010, 41(2): 62-67.
    [114] 刘雪美, 苑进, 张晓辉, 等. 3MQ-600型导流式气流辅助喷杆弥雾机研制与试验[J]. 农业工程学报, 2012, 28(10): 8-12. doi: 10.3969/j.issn.1002-6819.2012.10.002

    LIU X M, YUAN J, ZHANG X H, et al. Development and experiment on 3MQ-600 type air-assisted boom sprayer with air-deflector[J]. Trans Chin Soc Agric Eng, 2012, 28(10): 8-12. doi: 10.3969/j.issn.1002-6819.2012.10.002
    [115] 贾卫东, 陈龙, 薛新宇, 等. 风幕式喷杆喷雾雾滴特性试验[J]. 中国农机化学报, 2015, 36(3): 91-97.

    JIA W D, CHEN L, XUE X Y, et al. Experimental investigation of droplet characteristics of air-assist boom sprayer[J]. J Chin Agric Mech, 2015, 36(3): 91-97.
    [116] 刘青, 傅泽田, 祁力钧, 等. 9WZCD-25型风送式超低量喷雾机性能优化试验[J]. 农业机械学报, 2005, 36(9): 44-47.

    LIU Q, FU Z T, QI L J, et al. Characteristics optimization experiments of 9WZCD-25 air-blast and ultra low volume sprayer[J]. Trans Chin Soc Agric Mach, 2005, 36(9): 44-47.
    [117] 彭军, 李睿远, 柴苍修. 风送液力式超低量喷雾装置内流场的模拟分析[J]. 机械工程与自动化, 2007(2): 53-55.

    PENG J, LI R Y, CHAI C X. Simulation of the inner flow of the air-assisted hydraulic ultra-low volume sprayer device[J]. Mech Eng & Autom, 2007(2): 53-55.
    [118] DE DEUS GODINHO J Jr, RUAS R A A, REIS M R D, et al. Reduction in the spray drift of 2,4-D in tomato using hydraulic nozzles with air induction and LI-700 adjuvant[J]. Pesqui Agropecu Trop, 2018, 48(2): 134-139.[LinkOut doi: 10.1590/1983-40632018v4851416
    [119] FORNASIERO D, MORI N, TIRELLO P, et al. Effect of spray drift reduction techniques on pests and predatory mites in orchards and vineyards[J]. Crop Prot, 2017, 98: 283-292. doi: 10.1016/j.cropro.2017.04.010
    [120] 兰玉彬, 单常峰, 王庆雨, 等. 不同喷雾助剂在植保无人机喷施作业中对雾滴沉积特性的影响[J]. 农业工程学报, 2021, 37(16): 31-38. doi: 10.11975/j.issn.1002-6819.2021.16.005

    LAN Y B, SHAN C F, WANG Q Y, et al. Effects of different spray additives on droplet deposition characteristics during plant protection UAV spraying operations[J]. Trans Chin Soc Agric Eng, 2021, 37(16): 31-38. doi: 10.11975/j.issn.1002-6819.2021.16.005
    [121] LAN Y, HOFFMANN W C, FRITZ B K, et al. Spray drift mitigation with spray mix adjuvants[J]. Appl Eng Agric, 2008, 24(1): 5-10. doi: 10.13031/2013.24157
    [122] 高赛超, 周晓欣, 秦维彩, 等. 利用风洞评价助剂对杀虫剂航空喷雾雾滴飘移的影响[J]. 应用昆虫学报, 2018, 55(4): 654-658.

    GAO S C, ZHOU X X, QIN W C, et al. Using a wind tunnel test to evaluate the effect of spray adjuvant on droplet drift during aerial low volume insecticide spraying[J]. Chin J Appl Entomol, 2018, 55(4): 654-658.
    [123] 陈晓, 刘德江, 王果, 等. 喷雾参数及助剂类型对植保无人飞机在棉花中期喷雾雾滴沉积分布的影响[J]. 农药学学报, 2020, 22(2): 347-352. doi: 10.16801/j.issn.1008-7303.2020.0051

    CHEN X, LIU D J, WANG G, et al. Effect of spray parameters and adjuvant type on droplet deposition deposition of plant protection unmanned aerial vehicle in mid-growth-cotton field[J]. Chin J Pestic Sci, 2020, 22(2): 347-352. doi: 10.16801/j.issn.1008-7303.2020.0051
  • 加载中
图(10)
计量
  • 文章访问数:  426
  • HTML全文浏览量:  180
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-26
  • 录用日期:  2022-09-19
  • 网络出版日期:  2022-09-26
  • 刊出日期:  2022-10-10

目录

    /

    返回文章
    返回