Milan J, Melita K, Dejan B, et al. Organophosphate induced delayed polyneuropathy in man: an overview[J]. Clin Neurol Neurosurg, 2011, 113(1): 7-10.
|
中华人民共和国农业部公告第322号[Z]. 2003-12-30. The 322nd Announcement of the Ministry of Agriculture of the People's Republic of China[Z]. 2003-12-30.(in Chinese)
|
Casida J E, Kathleen A D. Anticholinesterase insecticide retrospective[J]. Chem-Biol Interact, 2013, 203(1): 221-225.
|
Ojo J O, Abduliah L, Evans J, et al. Exposure to an organophosphate pesticide, individually or in combination with other Gulf War agents, impairs synaptic integrity and neuronal differentiation, and is accompanied by subtle microvascular injury in a mouse model of Gulf War agent exposure[J]. Neuropathology, 2014, 34(2): 109-127.
|
Vismaya, Rajini P S. Oral exposure to the organophosphorus insecticide, monocrotophos induces intestinal dysfunction in rats[J]. Food Chem Toxicol, 2014, 71: 236-243.
|
Zhu Bin, Gong Yuxin, Liu Lei, et al. Toxic effects of triazophos on rare minnow(Gobiocypris rarus) embryos and larvae[J]. Chemosphere, 2014, 108: 46-54.
|
Forsyth C S, Chanbers J E. Activation and degradation of the phosphorothionate insecticides parathion and EPN by rat brain[J]. Biochem Pharmacol, 1989, 38(10): 1597-1603.
|
Burattif F M, Daniello A, Volpe M T, et al. Malathion bioactivation in the human liver: the contribution of different cytochrome P450 isoforms[J]. Drug Metab Dispos, 2005, 33(3): 295-302.
|
Costa L G. Current issues in organophosphate toxicology[J]. Clinica Chimica Acta, 2006, 366(1-2): 1-13.
|
李劲彤, 杜先林. 有机磷杀虫剂的体内活化与解毒[J]. 中国工业医学杂志, 1999, 12(1): 53-55. Li Jintong, Du Xianlin. The activation and detoxification of organophosphate insecticides in vivo[J]. Chinese J Ind Med, 1999, 12(1): 53-55.(in Chinese)
|
Campbell P M, Trott J F, Claudianos C, et al. Biochemistry of esterases associated with organophosphate resistance in Lucilia cuprina with comparisons to putative orthologues in other Diptera[J]. Biochem Gene, 1997, 35(1-2): 17-40.
|
Robyn J R, Charles C, Peter M C, et al. Two major classes of target site insensitivity mutations confer resistance to organophosphate and carbamate insecticides[J]. Pestic Biochem Physiol, 2004, 79(3): 84-93.
|
周斌芬, 唐振华, 高菊芳. 昆虫代谢抗性的研究进展[J]. 农药, 2008, 47(5): 313-316. Zhou Binfen, Tang Zhenhua, Gao Jufang. Advances in metabolic resistance to insecticides in insects[J]. Pesticedes, 2008, 47(5): 313-316.(in Chinese)
|
Costa L G, Toby B C, Clement E F. Paraoxonase(PON1): from toxicology to cardiovascular medicine[J]. Acta Biomed, 2005, 76(S2): 50-57.
|
Che-Mendoza A, Penilla R P, Rodríguez D A. Insecticide resistance and glutathione S-transferases in mosquitoes: a review[J]. African J Biotechnol, 2009, 8(8): 1386-1397.
|
Hodgson E. In vitro human phase I metabolism of xenobiotics I: pesticides and related compounds used in agriculture and public health[J]. J Biochem Mol Toxicol, 2003, 17(4): 201-206.
|
Furnes B, Schlenk D. Extrahepatic metabolism of carbamate and organophosphate thioether compounds by the flavin-containing monooxygenase and cytochrome P450 systems[J]. Drug Metab Dispos, 2005, 33(2): 214-218.
|
Lotti M, Moretto A. Organophosphate-induced delayed polyneuropathy[J]. Toxicol Rev, 2005, 24(1): 37-49.
|
Mizutani M, Ohta D. Diversification of P450 genes during land plant evolution[J]. Annu Rev Plant Biol, 2010, 61(1): 291-315.
|
Leoni C, Buratti F M, Testai E. Fenthion bioactivation by recombinant human CYPs and FMO[J]. Drug Metab Rev, 2006, 38: 100-101.
|
Krueger S K, Williams D E. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism[J]. Pharmacol Ther, 2005, 106(3): 357-387.
|
Uno Y, Shimizu M, Yamazaki H. Molecular and functional characterization of flavin-containing monooxygenases in cynomolgus macaque[J]. Biochem Pharmacol, 2013, 85(12): 1837-1847.
|
Cashman J R, Perotti B Y, Berkman C E, et al. Pharmacokinetics and molecular detoxication[J]. Environ Health Persp, 1996, 104(S1): 23-40.
|
Usmani K A, Karoly E D, Hodgson E, et al. In vitro sulfoxidation of thioether compounds by human cytochrome P450 and flavin-containing monooxygenase isoforms with particular reference to the CYP2C subfamily[J]. Drug Metab Dispos, 2004, 32(3): 333-339.
|
Vilanova E, Sogorb M A. The role of phosphotriesterases in the detoxication of organophosphorus compounds[J]. Crit Rev Toxicol, 1999, 29(1): 21-57.
|
Chambers J E. PON1 multitasks to protect health[J]. Proc Natl Acad Sci USA, 2008, 105(35): 12639-12640.
|
Furlong C E. Genetic variability in the cytochrome P450-paraoxonase1(PON1) pathway for detoxication of organophosphorus compounds[J]. J Biochem Mol Toxicol, 2007, 21(4): 197-205.
|
Cole T B, Walter B J, Shih D M, et al. Toxicity of chlorpyrifos and chlorpyrifos oxon in a transgenic mouse model of the human paraoxonase(PON1) Q192R polymorphism[J]. Pharmacogen Genomics, 2005, 15(8): 589-598.
|
Sogorb M A, Vilanova E. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis[J]. Toxicol Lett, 2002, 128(1-3): 215-228.
|
Sogorb M A, Diaz-Aiejo N, Vilanova E, et al. Effect of some metallic cations and organic-compounds on the O-hexyl O-2,5-dichlorophenyl phosphoramidate hydrolyzing activity in hen plasma[J]. Arch Toxicol, 1993, 67(6): 416-421.
|
Buratti F M, Leoni C, Testai E. The human metabolism of organophosphorothionate pesticides: consequences for toxicological risk assessment[J]. Journal für Verbraucherschutz und Lebensmittelsicherheit, 2007, 2(1): 37-44.
|
Wheelock C E, Shan G M, Ottea J. Overview of carboxylesterases and their role in the metabolism of insecticides[J]. J Pestic Sci,et al. Esterase-based resistance in the tobacco-adapted form of the green peach aphid, Myzus persicae(Sulzer)(hemiptera: Aphididae) in the eastern United States[J]. Arch Insect Biochem Physiol, 2009, 72(2): 105-123.
|
Pan Yiou, Guo Hulin, Gao Xiwu. Carboxylesterase activity, cDNA sequence, and gene expression in malathion susceptible and resistant strains of the cotton aphid, Aphis gossypii[J]. Comp Biochem Physiol, Part B, 2009, 152(3): 266-270.
|
Cui Feng, Lin Zhe, Wang Hongsheng, et al. Two single mutations commonly cause qualitative change of nonspecific carboxylesterases in insects[J]. Insect Biochem Mol Biol, 2011, 41(1): 1-8.
|
Cui F, Qu H, Cong J. Do mosquitoes acquire organophosphate resistance by functional changes in carboxylesterases[J]. FASEB J, 2007, 21(13): 3584-3591.
|
Srigiriraju L, Semtner P J, Anderson T D,
|
Small G J, Hemingway J. Molecular characterization of the amplied carboxylesterase gene associated with organophosphorus insecticide resistance in the brown plant hopper, Nilaparvata lugens[J]. Insect Mol Biol, 2000, 9(6): 647-653.
|
Zhu Yucheng, Gordon L S, Chen Mingshun. Enhanced esterase gene expression and activity in a malathion-resistant strain of the tarnished plant bug, Lygus lineolaris[J]. Insect Biochem Mol Biol, 2004, 34(11): 1175-1186.
|
Motoyana N, Kao L R, Lin P T, et al. Dual role of esterases in insecticide resistance in the green rice leafhopper[J]. Pestic Biochem Physiol, 1984, 21(2): 139-147.
|
Cao Chuanwang, Zhang Jing, Gao Xiwu, et al. Overexpression of carboxylesterase gene associated with organophosphorus insecticide resistance in cotton aphids, Aphis gossypii(Glover)[J]. Pestic Biochem Physiol, 2008, 90(3): 175-180.
|
Reyes M, Collange B, Rault M, et al. Combined detoxification mechanisms and target mutation fail to confer a high level of resistance to organophosphates in Cydia pomonella(L.)(Lepidoptera): Tortricidae[J]. Pest Biochem Physiol, 2011, 99(1): 25-32.
|
Bass C, Puinean A M, Zimmer C T, et al. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae[J]. Insect Biochem Mol Biol, 2014, 51: 41-51.
|
Ku C C, Chiang F M, Hsin C Y, et al. Glutathione transferase isozymes involved in insecticide resistance of diamondback moth larvae[J]. Pestic Biochem Physiol, 1994, 50(3): 191-197.
|
Reidy G F, Rose H A, Viseton S, et al. Increased glutathione S-transferase activity and glutathione content in an insecticide-resistant strain of Tribolium castaneum(Herbs遴稩繛J]弮攠吼i>乐呥扳恴汩幣嬠蝂孩杯杣硨づ扭阠虐荨酹筳荩副癬丼丯扩怾砬稠1990,丠嘳儶丨夳嬩嬺戠269-276.
|
Qin G H, Jia M, Liu T, et al. Characterization and functional analysis of four glutathione S-transferases from the migratory locust, Locusta migratoria[J]. PLoS ONE, 2013, 8(3): e58410. doi: 10.1371/journal.pone.0058410.
|
Zhou Wenwu, Li Xiwang, Quan Yinhua, et al. Identification and expression profiles of nine glutathione S-transferase genes from the important rice phloem sap-sucker and virus vector Laodelphax striatellus(Fallén)(Hemiptera: Delphacidae)[J]. Pest Manag Sci, 2012, 68(9): 1296-1305.
|
Fujioka K, Casida J E. Glutathione S-transferase conjugation of organophosphorus pesticides yields S-phospho-, S-aryl-, and S-alkylglutathione derivatives[J]. Chem Res Toxicol, 2007, 20(8): 1211-1217.
|
Lagadic L, Cuany A, Bergé J B, et al. Purification and partial characterization of glutathione S-transferase from insecticide-resistant and lindane-induced susceptible Spodoptera littoralis(Biosd) larvae[J]. Insect Biochem Physiol, 1993, 23(4): 467-474. CW, et al. Organophosphate and pyrethroid hydrolase activities of mutant esterases from the cotton bollworm Helicoverpa armigera[J]. PLOS ONE, 2013, 8(10): e77685.
|