• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊
  • 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊
ZHANG Zhongyu, XIE Yao, GUO Mengyu, ZHANG Mengna, QIU Lihong. Combined acute toxic effects of fenbuconazole and copper on zebrafish (Danio rerio) at different life stages[J]. Chinese Journal of Pesticide Science, 2024, 26(4): 798-807. DOI: 10.16801/j.issn.1008-7303.2024.0048
Citation: ZHANG Zhongyu, XIE Yao, GUO Mengyu, ZHANG Mengna, QIU Lihong. Combined acute toxic effects of fenbuconazole and copper on zebrafish (Danio rerio) at different life stages[J]. Chinese Journal of Pesticide Science, 2024, 26(4): 798-807. DOI: 10.16801/j.issn.1008-7303.2024.0048

Combined acute toxic effects of fenbuconazole and copper on zebrafish (Danio rerio) at different life stages

More Information
  • Received Date: February 04, 2024
  • Accepted Date: March 25, 2024
  • Available Online: August 01, 2024
  • Published Date: April 24, 2024
  • In order to clarify the combined acute toxic effects of the fungicide fenbuconazole and copper to zebrafish, the acute toxicity of fenbuconazole and copper alone, as well as their combination at equaltoxicity ratio or at different mass concentration ratios to zebrafish during different life stages were determined. The combined acute toxic effects were evaluated using the additional index (AI) method and co-toxicity coefficient (CTC) method. The results showed that the 96 h-LC50 values of fenbuconazole for adults, embryos, and larvae of zebrafish were 2.615, 4.121 and 4.140 mg/L, respectively, while that of copper were 0.235, 0.353, and 0.429 mg/L, respectively. The order of the acute toxicity was adult > embryo > larvae. The toxic effects of the mixtures on both zebrafish larvae and embryos showed an enhancement tendency. At equitoxicity ratio, the 96 h-LC50 of the mixed fenbuconazole and copper for larvae and embryos was 2.051 and 2.207 mg/L, respectively, and the evaluation results with AI and CTC methods were both additive; while the 96 h-LC50 of the mixture for adults was 1.755 mg/L, and the evaluation results of the two methods were different, which were antagonistic and additive effects, respectively. At different mass concentration ratios, the 96 h-LC50 values of fenbuconazole and copper mixed at 2 : 8, 5 : 5, and 8 : 2 were 0.272, 0.378 and 0.785 mg/L for embryos, respectively, which showed synergistic effects; the 96 h-LC50 values were 0.532, 0.621 and 0.934 mg/L for larvae, respectively, which showed either synergistic or additive effects. The results of the two methods were consistent for the embryos and larvae. As for the adults zebrafish, the 96 h-LC50 values were 0.434、0.653 and 1.053 mg/L, respectively, and the mixtures showed antagonistic effects except that it showed antagonistic and additive effects at 8:2 ratio with the two different methods. The results suggested that the acute toxicity of the mixture of fenbuconazole and copper was stronger to zebrafish at early life stages. This finding will help us to better evaluate the impact of contamination of fenbuconazole and copper on aquatic organisms.

  • [1]
    MONDAL S N, BHATIA A, SHILTS T, et al. Baseline sensitivities of fungal pathogens of fruit and foliage of citrus to azoxystrobin, pyraclostrobin, and fenbuconazole[J]. Plant Dis, 2005, 89(11): 1186-1194. doi: 10.1094/PD-89-1186
    [2]
    XU X M, GAO L Q, YANG J R. Are insensitivities of Venturia inaequalis to myclobutanil and fenbuconazole correlated?[J]. Crop Prot, 2010, 29(2): 183-189. doi: 10.1016/j.cropro.2009.07.002
    [3]
    钟寿文. 24%腈苯唑悬浮剂防治稻曲病药效及其对水稻的安全性试验[J]. 农民致富之友, 2014(4): 132-133. doi: 10.3969/j.issn.1003-1650.2014.04.114

    ZHONG S W. Efficacy of 24% fenbuconazole SC against false smut of rice and its safety test on rice[J]. Friends of the farmers to get rich, 2014(4): 132-133. doi: 10.3969/j.issn.1003-1650.2014.04.114
    [4]
    KONWICK B J, GARRISON A W, AVANTS J K, et al. Bioaccumulation and biotransformation of chiral triazole fungicides in rainbow trout (Oncorhynchus mykiss)[J]. Aquat Toxicol, 2006, 80(4): 372-381. doi: 10.1016/j.aquatox.2006.10.003
    [5]
    Pesticide Properties Data Base. [DB]. http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/293.htm.1992.
    [6]
    WU Y Q, YANG Q H, CHEN M, et al. Fenbuconazole exposure impacts the development of zebrafish embryos[J]. Ecotoxicol Environ Saf, 2018, 158: 293-299. doi: 10.1016/j.ecoenv.2018.04.048
    [7]
    HERRERO-HERNÁNDEZ E, SIMÓN-EGEA A B, SÁNCHEZ-MARTÍN M J, et al. Monitoring and environmental risk assessment of pesticide residues and some of their degradation products in natural waters of the Spanish vineyard region included in the Denomination of Origin Jumilla[J]. Environ Pollut, 2020, 264: 114666. doi: 10.1016/j.envpol.2020.114666
    [8]
    QIN Y J, WANG X H, YAN X L, et al. Developmental toxicity of fenbuconazole in zebrafish: effects on mitochondrial respiration and locomotor behavior[J]. Toxicology, 2022, 470: 153137. doi: 10.1016/j.tox.2022.153137
    [9]
    ZHANG H, MENG G, MAO F J, et al. Use of an integrated metabolomics platform for mechanistic investigations of three commonly used algaecides on cyanobacterium, Microcystis aeruginosa[J]. J Hazard Mater, 2019, 367: 120-127. doi: 10.1016/j.jhazmat.2018.12.069
    [10]
    BORKOW G, GABBAY J. Copper as a biocidal tool[J]. Curr Med Chem, 2005, 12(18): 2163-2175. doi: 10.2174/0929867054637617
    [11]
    姚廷山, 周彦, 周常勇. 应用铜制剂防治柑橘溃疡病的研究进展[J]. 园艺学报, 2016, 43(9): 1711-1718.

    YAO T S, ZHOU Y, ZHOU C Y. Advances in copper resistant mechanisms and control methods of citrus canker[J]. Acta Hortic Sin, 2016, 43(9): 1711-1718.
    [12]
    王忠跃. 铜制剂及在世界上的发展[J]. 中外葡萄与葡萄酒, 2001(2): 34.

    WANG Z Y. Copper preparations and developments in the world[J]. Sino Overseas Grapevine Wine, 2001(2): 34.
    [13]
    成惠珍, 黄和玲. 无机铜制剂在邹平市应用现状、问题及对策[J]. 天津农业科学, 2020, 26(11): 56-59.

    CHENG H Z, HUANG H L. The present situation, existing problems and countermeasures on the application of inorganic copper preparation in Zouping city[J]. Tianjin Agric Sci, 2020, 26(11): 56-59.
    [14]
    张雪, 张聪, 宋超, 等. 长江下游流域水体中重金属含量及风险评估[J]. 中国农学通报, 2017, 33(30): 67-73.

    ZHANG X, ZHANG C, SONG C, et al. Heavy metal content of water and risk assessment in the lower reaches of the Yangtze River[J]. Chin Agric Sci Bull, 2017, 33(30): 67-73.
    [15]
    简敏菲, 李玲玉, 余厚平, 等. 鄱阳湖湿地水体与底泥重金属污染及其对沉水植物群落的影响[J]. 生态环境学报, 2015, 24(1): 96-105.

    JIAN M F, LI L Y, YU H P, et al. Heavy metals pollution on the water and sediments and its influence on the submerged macrophyte community in the wetland of Poyang Lake[J]. Ecol Environ Sci, 2015, 24(1): 96-105.
    [16]
    PIZARRO J, VERGARA P M, RODRÍGUEZ J A, et al. Heavy metals in northern Chilean Rivers: spatial variation and temporal trends[J]. J Hazard Mater, 2010, 181(1-3): 747-754. doi: 10.1016/j.jhazmat.2010.05.076
    [17]
    VICENTE-MARTORELL J J, GALINDO-RIAÑO M D, GARCÍA-VARGAS M, et al. Bioavailability of heavy metals monitoring water, sediments and fish species from a polluted estuary[J]. J Hazard Mater, 2009, 162(2-3): 823-836. doi: 10.1016/j.jhazmat.2008.05.106
    [18]
    DE BOECK G, MEEUS W, DE COEN W, et al. Tissue-specific Cu bioaccumulation patterns and differences in sensitivity to waterborne Cu in three freshwater fish: Rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio), and gibel carp (Carassius auratus gibelio)[J]. Aquat Toxicol, 2004, 70(3): 179-188. doi: 10.1016/j.aquatox.2004.07.001
    [19]
    SIMONATO J D, MELA M, DORIA H B, et al. Biomarkers of waterborne copper exposure in the Neotropical fish Prochilodus lineatus[J]. Aquat Toxicol, 2016, 170: 31-41. doi: 10.1016/j.aquatox.2015.11.012
    [20]
    TILTON F A, BAMMLER T K, GALLAGHER E P. Swimming impairment and acetylcholinesterase inhibition in zebrafish exposed to copper or chlorpyrifos separately, or as mixtures[J]. Comp Biochem Physiol C Toxicol Pharmacol, 2011, 153(1): 9-16. doi: 10.1016/j.cbpc.2010.07.008
    [21]
    BEHLAU F, BELASQUE J, GRAHAM J H, et al. Effect of frequency of copper applications on control of citrus canker and the yield of young bearing sweet orange trees[J]. Crop Prot, 2010, 29(3): 300-305. doi: 10.1016/j.cropro.2009.12.010
    [22]
    OUSSOU-AZO A F, NAKAMA T, NAKAMURA M, et al. Antifungal potential of nanostructured crystalline copper and its oxide forms[J]. Nanomaterials, 2020, 10(5): 1003. doi: 10.3390/nano10051003
    [23]
    ZHOU C F, WANG Y J, LI C C, et al. Subacute toxicity of copper and glyphosate and their interaction to earthworm (Eisenia fetida)[J]. Environ Pollut, 2013, 180: 71-77. doi: 10.1016/j.envpol.2013.05.016
    [24]
    王冰洁, 姜蕾, 潘波, 等. Cu2+、Pb2+与2种除草剂单一及复合污染对蚯蚓的急性毒性[J]. 农药, 2020, 59(6): 425-429,454.

    WANG B J, JIANG L, PAN B, et al. Acute toxicity of single and compound pollution of Cu2+, Pb2+ and two herbicides to earthworm[J]. Agrochemicals, 2020, 59(6): 425-429,454.
    [25]
    李紫薇. 苯醚甲环唑与镉复合作用对蚯蚓的毒性效应[D]. 泰安: 山东农业大学, 2020.

    LI Z W. The toxic effects of difenoconazole and Cd combined pollution on earthworms[D]. Taian: Shandong Agricultural University, 2020.
    [26]
    WANG Y H, LI X F, XU C, et al. Toxicological interactions of cadmium and four pesticides on early life stage of rare minnow (Gobiocypris rarus)[J]. Ecotoxicology, 2020, 29(9): 1453-1461. doi: 10.1007/s10646-020-02269-2
    [27]
    ZHANG Y, GUO J J, CHEN Y, et al. Embryonic exposure to fenbuconazole inhibits gametogenesis in adult zebrafish by targeting gonads not brain[J]. Ecotoxicol Environ Saf, 2021, 228: 112967. doi: 10.1016/j.ecoenv.2021.112967
    [28]
    BRIX K V, DE BOECK G, BAKEN S, et al. Adverse outcome pathways for chronic copper toxicity to fish and amphibians[J]. Environ Toxicol Chem, 2022, 41(12): 2911-2927. ].
    [29]
    HERNANDEZ P P, UNDURRAGA C, GALLARDO V E, et al. Sublethal concentrations of waterborne copper induce cellular stress and cell death in zebrafish embryos and larvae[J]. Biol Res, 2011, 44(1): 7-15. doi: 10.4067/S0716-97602011000100002
    [30]
    MASON M W, PARROTT B B. Acute copper toxicity displays a nonmonotonic relationship with age across the medaka (Oryzias latipes) life span[J]. Environ Toxicol Chem, 2022, 41(12): 2999-3006. doi: 10.1002/etc.5481
    [31]
    BIANDOLINO F, PARLAPIANO I, FARAPONOVA O, et al. Effects of short- and long-term exposures to copper on lethal and reproductive endpoints of the harpacticoid copepod Tigriopus fulvus[J]. Ecotoxicol Environ Saf, 2018, 147: 327-333. doi: 10.1016/j.ecoenv.2017.08.041
    [32]
    化学农药环境安全评价试验准则 第12部分: 鱼类急性毒性试验: GB/T 31270.12—2014[S]. 北京: 中国标准出版社, 2015.

    Test guidelines on environmental safety assessment for chemical pesticides: Part 12: Fish acute toxicity test: GB/T 31270.12—2014[S]. Beijing: Standards Press of China, 2015.
    [33]
    OECD. Test No. 203 Fish, Acute Toxicity Test, OECD guidelines for the testing of chemicals[S]. Paris: Organization for Economic Co-operation and Development, 2019.
    [34]
    GIARI L, DEZFULI B S, ASTOLFI L, et al. Ultrastructural effects of cisplatin on the inner ear and lateral line system of zebrafish (Danio rerio) larvae[J]. J Appl Toxicol, 2012, 32(4): 293-299. doi: 10.1002/jat.1691
    [35]
    OECD. Test No. 210: Fish, Early-life Stage Toxicity Test, OECD guidelines for the testing of chemicals[S]. Paris: Organization for Economic Cooperation and Development, 2013.
    [36]
    FRAYSSE B, MONS R, GARRIC J. Development of a zebrafish 4-day toxicity of embryo-larval bioassay to assess chemicals[J]. Ecotoxicol Environ Saf, 2006, 63(2): 253-267. doi: 10.1016/j.ecoenv.2004.10.015
    [37]
    WANG Y H, XU C, WANG D, et al. Combined toxic effects of fludioxonil and triadimefon on embryonic development of zebrafish (Danio rerio)[J]. Environ Pollut, 2020, 260: 114105. doi: 10.1016/j.envpol.2020.114105
    [38]
    SUN Y P, JOHNSON E R. Analysis of joint action of insecticides against house flies[J]. J Econ Entomol, 1960, 53(5): 887-892. doi: 10.1093/jee/53.5.887
    [39]
    VIJVER M G, PEIJNENBURG W J G M, DE SNOO G R. Toxicological mixture models are based on inadequate assumptions[J]. Environ Sci Technol, 2010, 44(13): 4841-4842. doi: 10.1021/es1001659
    [40]
    WU S Y, LEI L L, LIU M T, et al. Single and mixture toxicity of strobilurin and SDHI fungicides to Xenopus tropicalis embryos[J]. Ecotoxicol Environ Saf, 2018, 153: 8-15. doi: 10.1016/j.ecoenv.2018.01.045
    [41]
    魏勇超, 王彦华, 雷成琦, 等. 环境中多残留农药复合暴露对淡水绿藻和斑马鱼的联合毒性[J]. 环境工程, 2018, 36(11): 185-189.

    WEI Y C, WANG Y H, LEI C Q, et al. Combined toxicity of co-exposure to multiple pesticide residues in environment to freshwater green algae and zebrafish[J]. Environ Eng, 2018, 36(11): 185-189.
    [42]
    葛婧, 蒋金花, 蔡磊明. 3种三唑类杀菌剂对斑马鱼的毒性研究[J]. 浙江农业学报, 2018, 30(5): 744-755.

    GE J, JIANG J H, CAI L M. Study on toxicity of three kinds of triazole fungicides on zebrafish (Danio rerio)[J]. Acta Agric Zhejiangensis, 2018, 30(5): 744-755.
    [43]
    宋明霞. 重金属铜对斑马鱼胚胎发育毒性作用的研究[D]. 烟台: 烟台大学, 2019.

    SONG M X. Study on embryo developmental toxicity of heavy metal copper on zebrafish[D]. Yantai: Yantai University, 2019.
    [44]
    KU T T, YAN W, JIA W Y, et al. Characterization of synergistic embryotoxicity of nickel and buprofezin in zebrafish[J]. Environ Sci Technol, 2015, 49(7): 4600-4608. doi: 10.1021/es506293t
    [45]
    CHEN L Q, QU G B, SUN X, et al. Characterization of the interaction between cadmium and chlorpyrifos with integrative techniques in incurring synergistic hepatoxicity[J]. PLoS One, 2013, 8(3): e59553. doi: 10.1371/journal.pone.0059553
    [46]
    BAGIHALLI G B, AVAJI P G, PATIL S A, et al. Synthesis, spectral characterization, in vitro antibacterial, antifungal and cytotoxic activities of Co(II), Ni(II) and Cu(II) complexes with 1, 2, 4-triazole Schiff bases[J]. Eur J Med Chem, 2008, 43(12): 2639-2649. doi: 10.1016/j.ejmech.2008.02.013
  • Related Articles

    [1]CAI Xiaoxu, YU Yongli, QI Chelimuge, MU Rui, CHENG Manrong, BAO Shushu, CHANG Xu, YOU Huan, ZHANG Xuefu, KANG Guiying, YANG Jingfeng, DONG Wu. Thiram-induced notochord malformation in zebrafish embryos and its association with thyroxine[J]. Chinese Journal of Pesticide Science, 2024, 26(4): 808-817. DOI: 10.16801/j.issn.1008-7303.2024.0070
    [2]LI Ruirui, ZHOU Ning, WU Mengqi, XU Wenping, TAO Liming, ZHANG Yang. Toxicity and oxidative damage of meperfluthrin on cardiac development of zebrafish embryos and larvae[J]. Chinese Journal of Pesticide Science, 2024, 26(1): 149-159. DOI: 10.16801/j.issn.1008-7303.2023.0102
    [3]PAN Lixuan, GUO Zhixin, MAO Liangang, ZHANG Lan, ZHANG Yanning, ZHU Lizhen, JIANG Hongyun, LIU Xingang. Developmental toxicity effects of the combinations of azoxystrobin and selenomethionine on zebrafish embryo and larvae[J]. Chinese Journal of Pesticide Science, 2023, 25(5): 1122-1129. DOI: 10.16801/j.issn.1008-7303.2023.0080
    [4]WANG Luyan, ZHANG Changpeng, WANG Xiangyun, HE Hongmei, ZHAO Xueping, JIANG Jinhua. Bioaccumulation of trifloxystrobin in zebrafish (Danio rerio)[J]. Chinese Journal of Pesticide Science, 2023, 25(1): 220-226. DOI: 10.16801/j.issn.1008-7303.2022.0095
    [5]GUO Zhixin, MAO Liangang, ZHANG Lan, ZHANG Yanning, ZHU Lizhen, JIANG Hongyun. Joint toxicity effects of azoxystrobin and three kinds of exogenous selenium on zebrafish during different life stages[J]. Chinese Journal of Pesticide Science, 2021, 23(6): 1159-1167. DOI: 10.16801/j.issn.1008-7303.2021.0139
    [6]WANG Feng, CHEN Xing, YANG Dahan, YANG Jingfeng, KANG Guiying, ZHAO Baoquan, LI Xiaoman, PU Yunzhu, ZHENG Na, DONG Wu. Toxic effects of glufosinate-ammonium on zebrafish embryos and larvae[J]. Chinese Journal of Pesticide Science, 2016, 18(3): 323-329. DOI: 10.16801/j.issn.1008-7303.2016.0044
    [7]Sun Xingze, Wang Chengju, Li Xuefeng, Zheng Mingqi, Qiu Lihong. Acute toxicity of fenoxycarb to zebrafish(Brachydanio rerio) at different development stages and chronic toxicity to embryo and sac-fry stage[J]. Chinese Journal of Pesticide Science, 2015, 17(3): 279-284. DOI: 10.3969/j.issn.1008-7303.2015.03.05
    [8]MAO Chenlei, WANG Jue, JIANG Shengju, ZHENG Junyao, YIN Xiaohui, WU Huiming. Toxicity of spirotetramat and oxidative stress response in female zebrafish(Danio rerio)[J]. Chinese Journal of Pesticide Science, 2014, 16(3): 300-306. DOI: 10.3969/j.issn.1008-7303.2014.03.09
    [9]WU Sheng-gan, WU Chang-xing, CHEN Li-ping, CANG Tao, YU Rui-xian, WANG Yan-hua, ZHAO Xue-ping. Acute and Joint Toxicity of Two Organosilicon Surfactantswith Three Pesticides to Brachydanio rerio[J]. Chinese Journal of Pesticide Science, 2009, 11(1): 145-148.
    [10]ZOU Ji-xin, HE Xiong-kui, TAO Chuan-jiang, PIAO Xiu-ying, JIANG Hui. Acute Toxicity and Bio-concentration of Fluoroglycofen-ethyl to Brachydonio rerio[J]. Chinese Journal of Pesticide Science, 2006, 8(4): 375-378.

Catalog

    Article views (67) PDF downloads (14) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return